

 WAVECREST Corporation
Application Programming Interface (API)
User’s Guide

200002-05 REV A

This page intentionally left blank.

WAVECREST Corporation continually engages in research related to
product improvement. New material, production methods, and design
refinements are introduced into existing products without notice as a
routine expression of that philosophy. For this reason, any current
WAVECREST product may differ in some respect from its published
description but will always equal or exceed the original design
specifications unless otherwise stated.

Copyright 2000-2002

WAVECREST Corporation
A Technologies Company

7626 Golden Triangle Drive
Eden Prairie, Minnesota 55344

(952) 831-0030
(800) 733-7128

http://www.wavecrest.com
All Rights Reserved

U.S. Patent Nos. 4,908,784 and 6,185,509 and 6,194,925; other
United States and foreign patents pending.

Microsoft and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation.

ATTENTION: USE OF THE SOFTWARE IS SUBJECT TO THE WAVECREST SOFTWARE LICENSE
TERMS SET FORTH BELOW. USING THE SOFTWARE INDICATES YOUR ACCEPTANCE OF THESE
LICENSE TERMS. IF YOU DO NOT ACCEPT THESE LICENSE TERMS, YOU MUST RETURN THE
SOFTWARE FOR A FULL REFUND.

WAVECREST SOFTWARE LICENSE TERMS

The following License Terms govern your use of the accompanying Software unless you have a separate written
agreement with Wavecrest.

License Grant. Wavecrest grants you a license to use one copy of the Software. USE means storing, loading,
installing, executing or displaying the Software. You may not modify the Software or disable any licensing or
control features of the Software.

Ownership. The Software is owned and copyrighted by Wavecrest or its third party suppliers. The Software is the
subject of certain patents pending. Your license confers no title or ownership in the Software and is not a sale of any
rights in the Software.

Copies. You may only make copies of the Software for archival purposes or when copying is an essential step in the
authorized Use of the Software. You must reproduce all copyright notices in the original Software on all copies.
You may not copy the Software onto any bulletin board or similar system. You may not make any changes or
modifications to the Software or reverse engineer, decompile, or disassemble the Software.

Transfer. Your license will automatically terminate upon any transfer of the Software. Upon transfer, you must
deliver the Software, including any copies and related documentation, to the transferee. The transferee must accept
these License Terms as a condition to the transfer.

Termination. Wavecrest may terminate your license upon notice for failure to comply with any of these License
Terms. Upon termination, you must immediately destroy the Software, together with all copies, adaptations and
merged portions in any form.

Limited Warranty and Limitation of Liability. Wavecrest SPECIFICALLY DISCLAIMS ALL OTHER
REPRESENTATIONS, CONDITIONS, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. ALL OTHER IMPLIED TERMS ARE EXCLUDED. IN NO
EVENT WILL WAVECREST BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE,
WHETHER OR NOT WAVECREST MAY BE AWARE OF THE POSSIBILITY OF SUCH DAMAGES. IN
PARTICULAR, WAVECREST IS NOT RESPONSIBLE FOR ANY COSTS INCLUDING, BUT NOT LIMITED
TO, THOSE INCURRED AS THE RESULT OF LOST PROFITS OR REVENUE, LOSS OF THE USE OF THE
SOFTWARE, LOSS OF DATA, THE COSTS OF RECOVERING SUCH SOFTWARE OR DATA, OR FOR
OTHER SIMILAR COSTS. IN NO CASE SHALL WAVECREST'S LIABILITY EXCEED THE AMOUNT OF
THE LICENSE FEE PAID BY YOU FOR THE USE OF THE SOFTWARE.

Export Requirements. You may not export or re-export the Software or any copy or adaptation in violation of
any applicable laws or regulations.

U.S. Government Restricted Rights. The Software and documentation have been developed entirely at private
expense and are provided as Commercial Computer Software or restricted computer software.

They are delivered and licensed as commercial computer software as defined in DFARS 252.227-7013 Oct 1988,
DFARS 252.211-7015 May 1991 or DFARS 252.227.7014 Jun 1995, as a commercial item as defined in FAR
2.101 (a), or as restricted computer software as defined in FAR 52.227-19 Jun 1987 or any equivalent agency
regulations or contract clause, whichever is applicable.

You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS
clause or the Wavecrest standard software agreement for the product.

Table of Contents

Chapter 1 - INTRODUCTION

1.1 Elements of an Application Utilizing the WAVECREST
Production API..1-1

1.2 Files comprising the WAVECREST Production API1-2

1.3 WAVECREST Production API Installation1-3

1.4 Building the Sample Application..1-3

1.5 Executing the Sample Application..1-3

1.6 Reviewing the Sample Application.......................................1-4

1.7 Where to Go From Here..1-6

Chapter 2 - HIGH LEVEL FUNCTIONS

2.1 Standard Window Routines ..2-1

2.1.1 Fill a Window Structure with Default Parameters2-2

2.1.2 Perform a Data Acquisition.......................................2-3

2.1.3 Clear a Window Structure Prior to Release2-4

2.1.4 Load Settings from VISI6 Configuration File2-4

2.2 High Level Utility Routines..2-5

2.2.1 Get API Version..2-5

2.2.2 Fill a Parameter Structure with Default Values2-5

2.2.3 Perform a Pulse-find Operation2-6

2.2.4 Determine X-value in Plot Structure Based
on Index...2-7

2.2.5 Determine Y-value in Plot Structure Based
on Index...2-7

2.2.6 Determine Tail-fit Y-value for a given X-value2-8

2.2.7 Free all internal memory ...2-8

Chapter 3 - STRUCTURES

3.1 Standard Window Structures ..3-1

3.1.1 Structure used for Oscilloscope Window..................3-1

3.1.2 Structure used for Histogram Window3-2

3.1.3 Structure used for Jitter Analysis Window3-4

3.1.4 Structure used for Function Analysis Window.........3-6

iii

3.1.5 Structure used for Time Digitizer Window...............3-8

3.1.6 Structure used for dataCOM Window3-9

3.1.7 Structure used for Eye Histogram Window3-15

3.1.8 Structure used for Time Series Window.................3-17

3.1.9 Structure used for Statistics Window......................3-19

3.1.10 Structure used for Random Data Window3-20

3.2 Utility Structures ...3-21

3.2.1 Basic structure used to return plot data...................3-21

3.2.2 Structure used for parameters of one side of
a tail-fit ..3-22

3.2.3 Structure used to hold tail-fit parameters for
histograms ...3-22

3.2.4 Structure used for Acquisition Parameters..............3-23

3.2.5 Structure with FFT window and analysis
Parameters...3-27

3.2.6 Structure used for Jitter Generator Parameters3-27

3.2.7 Structure used for Arm Generator Parameters........3-30

Chapter 4 - LOW LEVEL FUNCTIONS

4.1 Initialization and Termination Functions..............................4-1

4.1.1 Initialize Device ..4-1

4.1.2 Cleanup Prior to Application Termination................4-2

4.2 Information Functions...4-3

4.2.1 Get API Version..4-3

4.2.2 Get Maximum Channel Number...............................4-3

4.2.3 Get Maximum Start/Stop Count Values4-4

4.2.4 Get Maximum Sample Values4-4

4.2.5 Get Minimum Voltage Possible................................4-4

4.2.6 Get Maximum Voltage Possible4-5

4.3 Utility Functions ...4-5

4.3.1 Enable or Disable Front Panel Display4-5

4.3.2 Send Acquisition Parameters to Device....................4-5

4.3.3 Perform a Pulse-find Operation4-6

4.3.4 Update Voltage Information4-6

4.3.5 Device Reset ...4-7

iv

Table of Contents

4.4 Communication Functions ..4-7

4.4.1 Send Command String to Device..............................4-7

4.4.2 Send Command String and Receive
 ASCII Response..4-7

4.4.3 Send Command String and Receive Double Precision
Floating Point Number..4-8

4.4.3 Send Command String and Receive Long Integer
 as Response ...4-8

4.5 Acquisition Functions ...4-9

4.5.1 Request Data Acquisition..4-9

4.5.2 Request Data Acquisition with Raw Data...............4-10

4.5.3 Perform Analysis Macro ...4-11

4.5.4 Request Time Stamp Data.......................................4-12

4.5.5 Request Duty Cycle ..4-13

4.5.6 Request Strobing Oscilloscope Data.......................4-13

4.6 Calibration Functions..4-14

4.6.1 Request External Calibration4-14

4.6.2 Request Internal Calibration4-15

4.6.3 Request Strobe Calibration4-15

4.7 Generic GPIB Communication Functions4-16

4.7.1 Open a Generic GPIB Device4-16

4.7.2 Read Data from a Generic GPIB Device4-17

4.7.3 Send Data to a Generic GPIB Device4-18

4.7.4 Cleanup Prior to Application Termination..............4-18

4.8 DTS-550 Jitter Generator Functions4-19

4.8.1 Initialize Jitter Generator Device4-19

4.8.2 Cleanup Prior to Application Termination..............4-20

4.8.3 Enable or Disable Front Panel Display4-20

4.8.4 Get Jitter Generator Setup Parameters4-20

4.8.5 Send Jitter Generator Setup Parameters4-21

4.8.6 Fill Jitter Generator Structure with Defaults...........4-21

4.8.7 Jitter Generator Reset..4-22

4.8.8 Send Command String to Device............................4-22

v

4.8.9 Send Command String and Receive
 ASCII Response..4-22

4.8.10 Send Command String and Receive Double Precision
Floating Point Number..4-23

4.8.11 Send Command String and Receive Long Integer as
Response ...4-23

4.9 AG-100 Arm Generator Functions4-24

4.9.1 Initialize Arm Generator Device.............................4-24

4.9.2 Cleanup Prior to Application Termination..............4-25

4.9.3 Download Arm Generator Setup.............................4-25

4.9.4 Fill an Arm Generator Structure with
 Default Values...4-25

4.9.5 Arm Generator Reset ..4-26

4.9.6 Send Command String to Device............................4-26

4.9.7 Send and Receive ASCII Command.......................4-27

4.9.8 Optimal Marker Placement Arm Delay4-27

Chapter 5 - CODE SAMPLES

5.1 Modifying Window Structure Parameters5-1

5.2 Performing Tail-fit ..5-1

5.3 Drawing from a Plot Structure ..5-2

5.4 Performing a dataCOM Measurement5-3

Chapter 6 - BUILD CONSIDERATIONS

6.1 Supported Compilers...6-1

6.2 Build Requirements...6-1

6.2.1 Developing with C++..6-1

6.2.2 Win32 (95, 98, 2000 and NT 4.0)6-2

6.2.3 All UNIX Platforms ..6-2

6.2.4 HP-UX 9.05 and HP-UX 10.206-2

6.2.5 Sun 4.1.x (Solaris 1)..6-3

6.2.6 Sun 2.5.1 or above (Solaris 2)...................................6-3

Appendix A - Error Codes ...A-1

Appendix B - VBasic Example.. B-1

vi

CHAPTER 1 - INTRODUCTION

WAVECREST has implemented the Production API to provide direct
access to the algorithms employed in the VISI software. It allows
programmers to quickly integrate the functionality available in the VISI
software into their own applications. Many tedious tasks such as GPIB
interfacing and memory management are eliminated. A layered approach
is utilized which provides access to all the statistics and plot data available
in the VISI software, and versions are available for Microsoft Windows as
well as many UNIX platforms. It also provides routines to leverage
configurations established with the VISI software in order to streamline the
transition from characterization laboratory to production floor.

1.1 ELEMENTS OF AN APPLICATION UTILIZING THE
WAVECREST PRODUCTION API APPLICATION

An application utilizing the WAVECREST Production API is typically
comprised of the following components:

W
av

ec
re

st
Pr

od
uc

tio
n

A
PI

WavAPI

DtsAPI

GPIB Driver

User Application

Note that the WAVECREST Production API is divided into two blocks.
The DtsAPI block provides a Hardware Abstraction Layer to isolate the
higher level algorithms from the hardware itself. Although GPIB is the only
physical medium supported at this time, this abstraction layer provides a
means to easily migrate to other mediums such as Ethernet in the future.

1-1

The WavAPI block contains all the code required for the various
Visi algorithms. It depends on the DtsAPI block for all lower level
interactions with the hardware.

1.2 FILES COMPRISING THE WAVECREST PRODUCTION API

The WAVECREST Production API is comprised of a pair of header files
and accompanying libraries. The header files are platform independent
while the libraries are platform dependent. Libraries for Microsoft
Windows applications are provided in the form of run-time Dynamic Link
Libraries. Libraries for UNIX applications are provided in both static and
shared forms on HP platforms and as static libraries only on SUN.

In addition to the header and library files, sample application source code
and makefiles are also provided. There is also a directory containing
various dataCOM patterns. Files are located on the CDROM in the
following directory locations:

 ─api
 │ api.pdf // This manual in PDF form
 │ apitest.c // Sample application source code
 │ dtsapi.h // Low level header file
 │ wavapi.h // High level header file
 ─hp10x
 │ libdts.a // Low level static library
 │ libdts.sl // Low level shared library
 │ libwav.a // High level static library
 │ libwav.sl // High level shared library
 │ makefile // Makefile to build sample
 ─hp9x
 │ libdts.a // Low level static library
 │ libdts.sl // Low level shared library
 │ libwav.a // High level static library
 │ libwav.sl // High level shared library
 │ makefile // Makefile to build sample
 ─solaris2
 │ libdts.a // Low level static library
 │ libwav.a // High level static library
 │ makefile // Makefile to build sample
 ─sunos
 │ libdts.a // Low level static library
 │ libwav.a // High level static library
 │ makefile // Makefile to build sample
 ─win32
 │ dtsapi.bas // VBasic equivalent to include
 │ dtsapi.dll // Low level shared library
 │ dtsapi.lib // Stub header for linking
 │ makefile // Makefile to build sample
 │ wavapi.bas // VBasic equivalent to include
 │ wavapi.dll // High level shared library
 │ wavapi.lib // Stub header for linking
 ─patns // Various dataCOM pattern files

1-2

1.3 WAVECREST PRODUCTION API INSTALLATION

To install the WAVECREST Production API, first create a target directory
on the host system. Copy the files contained in the base directory (apitest.c
dtsapi.h wavapi.h) as well as those from the particular platform directory to
the newly created target directory.

1.4 BUILDING THE SAMPLE APPLICATION

Before attempting to build the sample application, the supported compiler
should be installed and properly configured. This may include modifying
the PATH environment variable so that the compiler executable can be
launched from a command line. It may also involve setting INCLUDE
and LIB environment variables so that the standard include files and
libraries may be located by the compiler. Consult the compiler
documentation for further information.

To build the sample application, on UNIX execute the following from a
command prompt:

make

To build the sample application, on Microsoft© Windows® execute the
following from a command prompt:

nmake

1.5 EXECUTING THE SAMPLE APPLICATION

Before attempting to execute the sample application, the supported GPIB
interface card must be installed and properly configured. Consult the
manufacturer’s documentation for further information. The WAVECREST
DTS207x should be powered, attached via GPIB cable, and the output from
one of the Cal Signals should be connected to the Ch1 input. Test your
configuration using VISI if possible.

To execute the sample application, issue the following from a command
prompt:

./apitest

Note: proceeding the application name by “./” assures that the executable
is launched even if the current directory is not included in the search path
on UNIX.

1-3

If the sample application is successfully executed, the program
should produce output similar to the following:
-Wavecrest Production API-
- Sample Application -

 Average: 5.002ns
 1-Sigma: 2.612ps
 Minimum: 4.992ns
 Maximum: 5.009ns

Congratulations! You have built your first application using the
WAVECREST Production API.

1.6 REVIEWING THE SAMPLE APPLICATION

Let’s examine the sample application in more detail.

❶
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "wavapi.h"

long main (void)
 {

❷
 STAT tStat;

❸
 if (DtsInitDev ("dev5", 0, 5))
 goto error;

❹
 memset (&tStat, 0, sizeof (STAT));
 WavDefStat (&tStat);

❺
 if (WavGetStat (&tStat))
 goto error;

❻
 printf ("-Wavecrest Production API-\n");
 printf ("- Sample Application -\n\n");
 printf (" Average: %.3lfns\n", tStat.dMean * 1e9);
 printf (" 1-Sigma: %.3lfps\n", tStat.dSdev * 1e12);
 printf (" Minimum: %.3lfns\n", tStat.dMini * 1e9);
 printf (" Maximum: %.3lfns\n", tStat.dMaxi * 1e9);

❼
 WavClrStat (&tStat);
 DtsExitDev ();
 return 0;

error:
 DtsExitDev ();
 printf ("DTS207x error\n");
 return -1;
 }

1-4

Step 1: Declare Required Include Files

The WAVECREST Production API utilizes a number of custom
structures which are declared in the two supplied include files. When
wavapi.h is included, dtsapi.h is also automatically included.

Step 2: Allocate Required Structures

Each Visi window has a specific structure and several function calls to
facilitate the data acquisition process. These structures contain input
information concerning how to acquire the data, and output data as a result
of the acquisition. The STAT structure is specific to the Statistics
window.

Step 3: Initialize the DTS207x

DtsInitDev() must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The
initialization values shown may need to be altered if a non-standard
configuration is used. The first parameter is used to specify the GPIB
device name on UNIX platforms and is ignored on Microsoft Windows.
The second parameter is the board number, and the final parameter is the
device number. See the documentation concerning this function call for
complete details concerning configuration options.

All Production API functions return a non-zero value in the event of an
error. These error codes are defined in the supplied include files. A
successful call to DtsInitDev() must be accomplished before any other
calls to the WAVECREST Production API.

Step 4: Initialize STAT Window Structure

Before utilizing an allocated Window Structure it must be initialized. This
initialization may involve two or more steps.

The first step is to zero out the array using the standard memset() function.
This step should only be performed once immediately after the structure is
allocated and prior to it being used, as information concerning dynamic
memory allocation is subsequently added to the structure.

The second step is to call the function call intended to initialize each of the
particular structure parameters to their default values. In this case the
WavDefStat() function is called. This step insures that all parameters
contain reasonable values.

The final step is to manually modify any parameters from their default
values. Great care should be used when manually adjusting parameters to
insure that valid values are used.

1-5

Step 5: Perform Data Acquisition

A single call is made to perform the acquisition. Information
concerning how to acquire the data is drawn from the STAT structure,
and output data as a result of the acquisition is also returned in the
STAT structure. If an error occurs during the acquisition a non-zero
value is returned. See Appendix A for definition of error codes.

Note that the WAVECREST Production API performs it’s own
dynamic memory allocation as required. The calling application does
not need to concern itself with memory management. However, since
dynamic memory allocation information is contained within the
structure, the supplied cleanup functions detailed below must be
utilized in order to avoid memory leaks.

Acquisition functions may be called repeatedly with the same Window
Structure. When doing so the output results contained within the
structure are simply overwritten. Any dynamic memory previously
allocated is re-utilized. Using the same Window Structure over and
over again has the desirable attribute of reducing the memory
fragmentation that would occur if memory was allocated, freed, and
reallocated repeatedly.

Step 6: Print Results

Results to be printed are drawn directly from the STAT structure.
Note that all results are returned in the units of Hertz, Volts, and
seconds. Therefore a conversion factor may be required in order to
display the results in more appropriate units.

Step 7: Cleanup and Terminate Application

Before terminating the application, the supplied cleanup functions should
be called. WavClrStat() frees any dynamic memory which may have been
allocated, and clears out the structure. DtsExitDev() closes the GPIB
device driver. After this cleanup has been performed the application may
terminate normally.

1.7 WHERE TO GO FROM HERE

This completes your introduction to the WAVECREST Production
API. You should have installed the software, built a basic application,
and reviewed it’s composition. You should now have a basic
understanding of the underlying framework, and be ready to leverage
that understanding to further explore the interface. Subsequent
chapters present additional detail concerning the structures and
functions provided with the Wavecrest Production API.

1-6

CHAPTER 2 - HIGH LEVEL FUNCTIONS

The WAVECREST Production API provides four high level functions to
implement each of the nine standard windows contained in the VISI6
software. Additional utility routines are provided to initialize parameters,
perform a pulse-find operation, and interpret plot arrays. These routines
relieve the programmer of many tedious tasks such as GPIB interfacing
and memory management.

This chapter provides a general overview of these high level functions. To
understand the particular input and output parameters involved in the
context of a specific window, refer to the corresponding structures
addressed in the following chapter.

2.1 STANDARD WINDOW ROUTINES

The four high level functions used to implement each of the nine standard
windows contained in the Visi software are declared as follows:

void WavDefXxxx (YYYY *tZzzz);
long WavGetXxxx (YYYY *tZzzz);
void WavClrXxxx (YYYY *tZzzz);
long WavCfgXxxx (YYYY *tZzzz, char *sFile);

Where the following substitutions are made:

Window Xxxx YYYY tZzzz

Oscilloscope Osci OSCI tOsci
Histogram Hist HIST tHist
Jitter Analysis Jitt JITT tJitt
Function Analysis Func FUNC tFunc
Time Digitizer Tdig TDIG tTdig
dataCOM Dcom DCOM tDcom
Eye Histogram Eyeh EYEH tEyeh
Time Series Tser TSER tTser
Statistics Stat STAT tStat
Random Data Rand RAND tRand

Note: _stdcall and DllCall are part of the function definitions in the header
file, but can essentially be ignored. They are utilized to provide options
when building and using DLL’s on Microsoft Windows. They are
implemented to allow the same header file to be used for both building the
DLL and importing the DLL, insuring consistent declarations.

2-1

2.1.1 Fill a Window Structure with Default Parameters

void WavDefXxxx (YYYY *tZzzz);

Input:
 tZzzz Pointer to Window Structure
Return:
 None
Example:
 STAT tStat;
 memset (&tStat, 0, sizeof (STAT));
 WavDefStat (&tStat);

This function is used to fill a Window Structure with default values.
Using this function insures that all parameters contain reasonable values.
It is recommended that this function is called first even if parameters
within the structure will be subsequently adjusted manually.

During data acquisition dynamic memory will be acquired as necessary.
This memory is tracked within the window structure. Before calling this
function with a newly allocated Window Structure you should zero out the
array using the standard memset() function. This step insures that
information within the structure concerning dynamic memory allocation is
cleaned out prior to using the structure. This step should be performed
once and only once on a given structure.

In spite of owning memory, this function may be called repeatedly for a
given window structure to reestablish default parameters, as it does not
effect any of the parameters pertaining to memory allocation. Use the
cleanup function detailed later in the chapter to clear out a structure after it
has been used. Failure to use the cleanup function before discarding a
window structure will result in a memory leak.

2-2

2.1.2 Perform a Data Acquisition

long WavGetXxxx (YYYY *tZzzz);

Input:
 tZzzz Pointer to Window Structure
Return:
 0 on Success or Error Code on Failure
Example:
 if (WavGetStat (&tStat))
 goto ErrorHandler;

This function call is used to perform a data acquisition. Information
concerning how to acquire the data is drawn from the Window
Structure, and output data as a result of the acquisition is also returned
in the Window Structure.

Note that the WAVECREST Production API performs it’s own
dynamic memory allocation as required. The calling application does
not need to concern itself with memory management. However, since
dynamic memory allocation information is contained within the
structure, the supplied cleanup functions detailed below must be
utilized in order to avoid memory leaks.

Acquisition functions may be called repeatedly with the same Window
Structure. When doing so the output results contained within the
structure are simply overwritten. Any dynamic memory previously
allocated is re-utilized. Using the same Window Structure over and
over again has the desirable attribute of reducing the memory
fragmentation that would occur if memory was allocated, freed, and
reallocated repeatedly.

2-3

2.1.3 Clear a Window Structure Prior to Release

void WavClrXxxx (YYYY *tZzzz);

Input:
 tZzzz Pointer to Window Structure
Return:
 None
Example:
 if (WavClrStat (&tStat))
 goto ErrorHandler;

Before a Window Structure is released this function should be called. This
function frees any dynamic memory that may have been allocated during a
previous data acquisition, and then clears out the structure.

2.1.4 Load Settings from VISI6 Configuration File

long WavCfgXxxx (YYYY *tZzzz, char *sFile);

Input:
 tZzzz Pointer to Window Structure
 sFile Pointer to File Name
Return:
 0 on Success or Error Code on Failure
Example:
 STAT tStat;
 memset (&tStat, 0, sizeof (STAT));
 WavCfgStat (&tStat, “myconfig.stc”);

This function is used to load a Window Structure with values from a VISI6
configuration file. The ability to do so streamlines the transition from
characterization laboratory to production floor. The requirements to zero the
Window Structure prior to calling the function are the same as the function to load
Default Parameters outlined above.

2-4

2.2 HIGH LEVEL UTILITY ROUTINES

These high level utility routines are provided to initialize parameters,
perform a pulse-find operation, and interpret plot arrays.

2.2.1 Get API Version

long WavGetVers (void);

Input:
 None
Return:
 Major version in high byte, minor version in low byte
Example:
 VerNum = WavGetVers ();

This function may be called to determine the current API version.

2.2.2 Fill a Parameter Structure with Default Values

void WavDefParm (PARM *tParm);

Input:
 tParm Pointer to Parameter Structure
Return:
 None
Example:
 PARM tParm;
 WavDefParm (&tParm);

This function is used to fill a Parameter Structure with default values.
These parameters could then be downloaded to the DTS207x by calling
the DtsSetParm() function. Using this function insures that all parameters
contain reasonable values.

This function is used internally by the API itself, but may be called by a
user application as well. It would typically be used if an application were
calling some of the lower level functions such as DtsRqstAcq(),
DtsGetData(), or DtsGetMacr() to implement a user defined algorithm.

It is not necessary to clear a Parameter Structure using the standard
memset() function prior to calling this function, as no dynamic memory
allocation information is contained within the Parameter Structure.

2-5

2.2.3 Perform a Pulse-find Operation

long WavPulsFnd (PARM *tParm, long lWind);

Input:
 tParm Pointer to Parameter Structure
 lWind Window Type, out of the following defined types:
 WIND_OSCI WIND_HIST WIND_JITT
 WIND_FUNC WIND_TDIG WIND_DCOM
 WIND_EYEH WIND_TSER WIND_STAT
 WIND_RAND
Return:
 0 on Success or Error Code on Failure
Example:

STAT tStat;
 memset (&tStat, 0, sizeof (STAT));
 WavDefStat (&tStat);
 if (WavPulsFnd (&tStat.tParm, WIND_STAT))
 goto ErrorHandler;

This function is used to perform a pulse-find operation in conjunction with the
high level window functions. The pulse-find feature determines minimum and
maximum voltage levels for the selected channels and/or arms and sets the
voltage thresholds based on the percentage set in the lFndPcnt field in the
tParm structure. Although a lower level function DtsPulsFnd() exists, it should
not be used in conjunction with the high level window functions.

2-6

2.2.4 Determine X-value in Plot Structure Based on Index

double WavGetXval (PLOT *tPlot, long lIndx);

Input:
 tPlot Pointer to Plot Structure
 lIndex Index from which to determine X-value,

range (0 to tPlot.lNumb-1)
Return:

X-value
Example:
 JITT tJitt;

double XvalOfYmax;
 memset (&tJitt, 0, sizeof (JITT));
 WavDefJitt (&tJitt);

if (WavGetJitt (&tJitt))
 goto ErrorHandler;

 XvalOfYmax = WavGetXval (&tJitt.tFftN,
 tJitt.tFftN.dYmaxIndx);

This function is used to assist a user application in extracting information
from a Plot Structure. In order to reduce memory requirements, only
Yaxis values are contained within Plot Structures. The X-axis values can
be calculated using this function.

The example above details how the maximum jitter frequency can be
determined from an N-clock Jitter Analysis.

2.2.5 Determine Y-value in Plot Structure Based on Index

double WavGetYval (PLOT *tPlot, long lIndx);

Input:
 tPlot Pointer to Plot Structure
 lIndx Index from which to determine Y-value,

range (0 to tPlot.lNumb-1)
Return:

Y-value
Example:
 JITT tJitt;

double Yval;
if (WavGetJitt (&tJitt))
 goto ErrorHandler;

 Yval = WavGetYval (&tJitt.tFftN, 0);

This function is used to assist a user application in extracting information
from a Plot Structure. It is primarily included to assist when programming
in Microsoft Visual Basic. When programming in C the data array can be
accessed directly, so this function adds unnecessary overhead.

2-7

2.2.6 Determine Tail-fit Y-value for a given X-value

double WavGetTfit (SIDE *tSide, double dXval);

Input:
 tSide Pointer to Tail-fit Side Structure
 dXval X-value from which to determine Y-value
Return:

Y-value
Example:
 HIST tHist;

double minYval, maxYval;
if (tHist.tTfit.lGood)
 {
 minYval = WavGetTfit (&tHist.tTfit.tL, tHist.tTfit.tL.dLoValu);

 maxYval = WavGetTfit (&tHist.tTfit.tL, tHist.tTfit.tL.dHiValu);
 }

In order to reduce memory requirements, only coefficients for the idealized
curve representing the fitted tails are stored when tail-fits are performed. This
function can be used to generate curves representing the idealized curves.
This function should only be applied after a tail-fit has been successfully
completed, as indicated by the “lGood” flag in the TFIT structure.

The example above details how the two endpoints of the idealized tail-fit
curve can be determined for the left tail of a Histogram window.

2.2.7 Free all internal memory

void WavFreeMem (void);

Input:
 None
Return:

None
Example:
 WavFreeMem();

This function may be called in order to free any memory that was allocated for
internal use. It is not normally necessary to call this function as all memory is
freed when the application is terminated. However, if multiple threads of
execution are used it may be desirable to call this function whenever an
individual thread is terminated.

2-8

CHAPTER 3 – STRUCTURES

The WAVECREST Production API provides structures to be used in
conjunction with the high-level function calls detailed in the previous
chapter. Each of these structures is specific to one of the nine standard
windows contained in the VISI software. Additional utility structures are
defined which are used within these standard window functions.

3.1 STANDARD WINDOW STRUCTURES

The following high level structures are used in conjunction with the
function calls detailed in the previous chapter. Each is specific to one of
the nine standard windows contained in the VISI software.

Please not that many of the structures contain padding fields. These fields
are usually called lPad1, lPad2, … or lPadLoc1, lPadLoc2, … and are
used to insure that variables are placed in the same absolute locations
within the structure regardless of compiler padding which varies from
system to system. These fields are only used to take up space, and can be
safely ignored.

3.1.1 Structure used for Oscilloscope window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 FFTS tFfts;
 long lStrt, lStop, lIncr;
 /* Output parameters */
 long lGood;
 PLOT tTime[POSS_CHNS];
 PLOT tFreq[POSS_CHNS];
 PLOT tNorm[POSS_CHNS];
 PLOT tComp[POSS_CHNS];
 } OSCI;

tParm
 Contains acquisition parameters, see end of chapter for details
tFfts
 FFT window and analysis parameters, see end of chapter for details
lStrt
 Start time in picosec's (20,000 to 100,000,000), the default is 20000
lStop
 Stop time in picosec's (20,000 to 100,000,000), the default is 100000
lIncr
 Time increment in picoseconds, the default is 500 and minimum is 10

3-1

lGood
 Flag indicates valid output data in structure
tTime
 Time domain plot of voltage data (Differential voltage on 3000)
tFreq
 Frequency domain plot of voltage data
tNorm
 Normal channel voltage data (3000 only)
tComp
 Complimentary channel voltage data (3000 only)

3.1.2 Structure used for Histogram window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 double dUnitInt;
 long lPassCnt, lErrProb;
 long lTailFit, lForcFit;
 long lMinHits;
 long lFndEftv;
 long lMinEftv, lMaxEftv;
 long lAutoFix;
 /* Output parameters */
 long lGood, lPad1;
 long lNormCnt;
 double dNormMin, dNormMax;
 double dNormAvg, dNormSig;
 long lPad2;
 long lAcumCnt;
 double dAcumMin, dAcumMax;
 double dAcumAvg, dAcumSig;
 long lBinNumb, lPad3;
 double dLtSigma[PREVSIGMA];
 double dRtSigma[PREVSIGMA];
 PLOT tNorm;
 PLOT tAcum;
 PLOT tMaxi;
 PLOT tBath;
 PLOT tEftv;
 TFIT tTfit;
 } HIST;

tParm
 Contains acquisition parameters, see end of chapter for details
dUnitInt
 Unit Interval to assess Total Jitter, only used if tail-fit is enabled.
 This value is entered in seconds, the default is 1e-9 seconds (1ns).

3-2

lPassCnt
 WavGetHist() can be called repeatedly with the same HIST structure.

Data is then accumulated in the tAcum and tMaxi plot structures.
This parameter tracks acquisitions so far, and may be set to 0 to reset.
When set to 0 the tAcum and tMaxi plot structures are flushed. It will
be automatically incremented by the WavGetHist() function.

lErrProb
 Error probability for Total Jitter, the valid range is -1 to -16 and the

default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lTailFit
 If non-zero a tail-fit will be attempted on the tAcum data array, the

default is to not attempt a tail-fit
lForcFit

If non-zero use the force-fit method, the default is disabled
lMinHits

Minimum hits before attempting a tail-fit in 1000's, the default is 50
lFndEftv

Flag to indicate that an effective jitter calculation is to be attempted
lMinEftv, lMaxEftv

Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

lAutoFix
If true perform a pulsefind as required

lGood
Flag indicates valid output data in structure

lNormCnt
Number of hits in tNorm plot array below

dNormMin, dNormMax
Minimum and maximum values in tNorm plot array below

dNormAvg
 Average value in tNorm plot array below
dNormSig
 1-Sigma value in tNorm plot array below
lAcumCnt
 Number of hits in tAcum plot array below
dAcumMin, dAcumMax
 Minimum and maximum values in tAcum plot array below
dAcumAvg
 Average value in tAcum plot array below
dAcumSig
 1-Sigma value in tAcum plot array below
lBinNumb, dLtSigma, dRtSigma
 These values are all used internally, DO NOT ALTER!
tNorm
 Histogram of data from latest acquisition only

3-3

tAcum
 Histogram of data from all acquisitions combined
tMaxi
 Histogram with the maximum value obtained for every particular bin

across all of the acquisitions performed so far
tBath
 Bathtub curves determined from PDF, only valid when a successful

tail-fit has been performed
tEftv
 Effective Bathtub curves if lFndEftv is set and a valid fit is obtained
tTfit
 Structure containing tail-fit info, only valid when a successful tail-fit

has been performed. See end of chapter for additional details

3.1.3 Structure used for Jitter Analysis window
typedef struct
 {
 /* Input parameters */
 PARM tParm;
 FFTS tFfts;
 long lIncStop;
 long lMaxStop;
 long lAutoFix;
 long lPad1;
 double dCornFrq;
 double dRjpjFmn;
 double dRjpjFmx;
 long lFftAvgs;
 /* Output parameters */
 long lGood;
 double dWndFact1Clk;
 double dWndFactNClk;
 PLOT tSigm;
 PLOT tPeak;
 PLOT tFft1;
 double dPjit1Clk;
 double dRjit1Clk;
 long *lPeakData1Clk;
 long lPeakNumb1Clk;
 long lPeakRsvd1Clk;
 long lPad2;
 PLOT tFftN;
 double dPjit1Clk;
 double dRjit1Clk;
 long *lPeakData1Clk;
 long lPeakNumb1Clk;
 long lPeakRsvd1Clk;
 long lPad3;
 double dFreq;
 } JITT;

3-4

tParm
 Contains acquisition parameters, see end of chapter for details
tFfts
 FFT window and analysis parameters, see end of chapter for details
lIncStop
 Increase stop count between acquisitions in increments of this value, the

default is 1. Stop counts range from tParm.lStopCnt to lMaxStop
lMaxStop
 Maximum stop count to collect data for, the default is 256. The stop

count will be incremented from the value in tParm.lStopCnt to this.
lAutoFix
 If true calculate the above parameters based on the following corner

frequency plus information measured on the live data signal
dCornFrq
 Corner Frequency for RJ+PJ in Hertz. This value is used in

conjunction with the Bit Rate and pattern to determine the maximum
stop count to be used to acquire RJ+PJ data. A lower value increase
acquisition time. The default value is 637e3.

dRjpjFmn
 Minimum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is disabled by default.
dRjpjFmx
 Maximum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is disabled by default.
lFftAvgs
 This variable is raised to the power of 2 to determine the number of

acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

lGood
 Flag indicates valid output data in structure
dWndFact1Clk, dWndFactNClk
 These values are all used internally, DO NOT ALTER!
tSigm
 Contains the 1-Sigma plot array
tPeak
 Contains the (max - min) plot array
tFft1
 Frequency plot data on 1-clock basis
dPjit1Clk
 Periodic jitter calculated on 1-clk basis
dRjit1Clk
 Random jitter calculated on 1-clk basis
lPeakData1Clk
 Tracks detected spikes in RJ+PJ data. This structure is not normally

directly access by an application program.
lPeakNumb1Clk
 Count of detected spikes, indicates the number of values in the

lPeakData1Clk array.

3-5

lPeakRsvd1Clk
 Used to track memory allocation for lPeakData1Clk values
tFftN
 Frequency plot data on N-clock basis
dPjitNClk
 Periodic jitter calculated on N-clk basis
dRjitNClk
 Random jitter calculated on N-clk basis
lPeakDataNClk
 Tracks detected spikes in RJ+PJ data. This structure is not normally

directly access by an application program.
lPeakNumbNClk
 Count of detected spikes, indicates the number of values in the

lPeakDataNClk array.
lPeakRsvdNClk
 Used to track memory allocation for lPeakDataNClk values
dFreq
 Carrier frequency

3.1.4 Structure used for Function Analysis window
typedef struct
 {
 /* Input parameters */
 PARM tParm;
 FFTS tFfts;
 long lIncStrt;
 long lMaxStrt;
 long lAnlMode;
 long lAutoFix;
 long lSpanCnt;
 long lDataPts;
 /* Output parameters */
 long lGood, lPad1;
 PLOT tTime;
 PLOT tDerv;
 PLOT tFftT;
 PLOT tFftD;
 PLOT tSigm;
 PLOT tPeak;
 PLOT tMini;
 PLOT tMaxi;
 double dSigmAvg;
 double dSigmMin;
 double dSigmMax;
 double dTimePos;
 double dTimeNeg;
 long lTimePosLoc;
 long lTimeNegLoc;
 double dDervPos;
 double dDervNeg;
 long lDervPosLoc;
 long lDervNegLoc;
 double dFreq;
 } FUNC;

3-6

tParm
 Contains acquisition parameters, see end of chapter for details. Note

that external Arm1 is enabled by default.
tFfts
 FFT window and analysis parameters, see end of chapter for details
lIncStrt
 Increase start count by this value, the default is 1. Data is collected for

start counts ranging from tParm.lStrtCnt to lMaxStrt.
lMaxStrt
 Maximum start count to collect data for, the default is 250. The start

count will be incremented from the value in tParm.lStrtCnt to this.
lAnlMode
 Relationship of start and stop counts, use one of:
 ANL_FNC_FIRST Arm start first
 ANL_FNC_PLUS1 Stop = Start + 1
 ANL_FNC_START Stop = Start
lAutoFix
 If true calculate the above parameters based on lSpanCnt and

lDataPts plus information measured on the live data signal
lSpanCnt
 The number of edges across which to measure
lDataPts
 The total data points within span to measure
lGood
 Flag indicates valid output data in structure
tTime
 Time domain plot data
tDerv
 1st derivative of time domain plot data
tFftT
 Frequency domain plot data
tFftD
 Frequency domain of 1st derivative plot data
tSigm
 Contains the 1-Sigma plot array
tPeak
 Contains the (max - min) plot array
tMini
 Contains the Minimum plot array
tMaxi
 Contains the Maximum plot array
dSigmAvg
 Average 1-Sigma value
dSigmMin
 Minimum 1-Sigma value
dSigmMax
 Maximum 1-Sigma value
dTimePos
 Maximum increase between time values

3-7

dTimeNeg
 Maximum decrease between time values
lTimePosLoc
 Index to maximum increase between values
lTimeNegLoc
 Index to maximum decrease between values
dDervPos
 Maximum increase between 1st derivative values
dDervNeg
 Maximum decrease between 1st derivative values
lDervPosLoc
 Index to maximum increase between 1st derivative values
lDervNegLoc
 Index to maximum decrease between 1st derivative values
dFreq
 Carrier frequency

3.1.5 Structure used for Time Digitizer window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 FFTS tFfts;
 long lAutoFix;
 long lPad1;
 double dMaxFreq;
 long lFftAvgs;
 /* Output parameters */
 long lGood;
 PLOT tTime;
 PLOT tStmp;
 PLOT tFft1;
 PLOT tFftN;
 double dCarFreq;
 double dSmpRate;
 double dFftNdBc;
 } TDIG;

tParm
 Contains acquisition parameters, see end of chapter for details
 lStampTm is enabled for this window by default
tFfts
 FFT window and analysis parameters, see end of chapter for details
lAutoFix
 If true calculate the above parameters based on dMaxFreq plus

information measured on the live data signal
dMaxFreq
 Maximum Frequency information that is desired

3-8

lFftAvgs
 This variable is raised to the power of 2 to determine the number of

acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

lGood
 Flag indicates valid output data in structure
tTime
 Time domain plot data
tStmp
 Time stamp data array, not normally plotted
tFft1
 Frequency plot data on 1-clock basis
tFftN
 Frequency plot data on N-clock basis
dCarFreq
 Carrier frequency
dSmpRate
 Sampling rate
dFftNdBc
 dBc assessed on 1-clock FFT data

3.1.6 Structures used for dataCOM window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 char sPtnName[128];
 long lAcqMode, lRndMode;
 long lQckMode, lIntMode;
 long lGetRate, lTailFit;
 long lErrProb, lPassCnt;
 long lFftAvgs;
 long lPad1;
 SPEC tRateInf, tDdjtInf, tRjpjInf;
 double dDdjtLpf, dDdjtHpf;
 double dRjpjFmn, dRjpjFmx;
 double dBitRate, dCornFrq;
 long lHeadOff;
 long lFndEftv;
 long lMinEftv, lMaxEftv;
 long lFiltEnb;
 /* Output parameters */
 long lGood;
 PATN tPatn;
 double dWndFact;
 long lMaxStop, lCmpMode, lPosRoll, lNegRoll;
 long lAdjustPW[2];
 DDJT *tDdjtData;
 long lDdjtRsvd;
 double *dMeasData[2];
 long lMeasRsvd[2];
 double *dRjpjData[4];
 long lRjpjRsvd[4];
 double *dTfitData[4];

3-9

 long lTfitRsvd[4];
 long *lPeakData[4];
 long lPeakNumb[4], lPeakRsvd[4];
 double *dFreqData[4];
 long lFreqRsvd[4];
 double *dTailData[4];
 long lTailRsvd[4];
 long lHits, lPad2;
 double dDdjt, dRang;
 double dRjit[4], dPjit[4], dTjit[4];
 double dEftvLtDj[4], dEftvLtRj[4];
 double dEftvRtDj[4], dEftvRtRj[4];
 PLOT tRiseHist, tFallHist;
 PLOT tRiseMeas, tFallMeas;
 PLOT tNormDdjt;
 PLOT tHipfDdjt, tLopfDdjt;
 PLOT tBathPlot[4];
 PLOT tEftvPlot[4];
 PLOT tSigmNorm[4], tSigmTail[4];
 PLOT tFreqNorm[4], tFreqTail[4];
 } DCOM;

tParm
 Contains acquisition parameters, see end of chapter for details
sPtnName
 Name of pattern file to be used, the file must exist or an error will be

returned. The first time WavGetDcom() is called the pattern is loaded
into tPatn which is the internal representation of the pattern. If the
pattern file is to be changed, WavClrDcom() should be called first to
clear the internal representation so that the new pattern will be loaded.
The default file is k285.ptn

lAcqMode
 Mask defining modes for RJ+PJ acquire, set bits as follows:
 Bit3: PW- Bit2: PW+ Bit1: Per- Bit0: Per+
 The default mode is to acquire Per+ only.
lRndMode
 Non-zero value enables random mode, valid when auto-arming only.

This is not enabled by default.
lQckMode
 Non-zero value enables quick mode, valid with external arm only.

When enabled a sparse set is obtained for RJ+PJ analysis, which
significantly reduces acquisition time. High frequency performance is
reduced when this option is enabled. This is not enabled by default.

lIntMode
 Interpolation mode for RJ+PJ analysis, non-zero value selects linear

interpolation, otherwise cubic interpolation is used. Cubic
interpolation is the default mode.

lGetRate
 If non-zero Bit Rate will be measured, otherwise appropriate value

must be supplied in dBitRate variable. The default is to measure the
Bit Rate. This mode is NOT valid when using random mode, the
value must be supplied.

3-10

lTailFit
 If non-zero a tail-fit will be tried, valid with external arm only. Not

enabled by default.
lErrProb
 Error probability for Total Jitter, the valid range is -1 to -16 and the

default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lPassCnt
 Acquisitions so far, set to 0 to reset
lFftAvgs
 This variable is raised to the power of 2 to determine the number of

acquisitions to use in order to average the FFT output. The default is a
value of 0 which uses a single acquisition, and hence no averaging.

tRateInf
 Parameters to acquire Bit Rate, see SPEC structure later in chapter
tDdjtInf
 Parameters to acquire DCD+DDJ, see SPEC structure later in chapter
tRjpjInf
 Parameters to acquire RJ+PJ, see SPEC structure later in chapter
dDdjtLpf
 Low pass DCD+DDJ filter frequency in Hertz, negative value disables

filter. This is only valid when external arming is enabled. This filter
is disabled by default.

dDdjtHpf
 High pass DCD+DDJ filter frequency in Hertz, a negative value

disables filter. This is only valid when external arming is enabled.
This filter is disabled by default.

dRjpjFmn
 Minimum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is disabled by default.
dRjpjFmx
 Maximum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is disabled by default.
dBitRate
 Bit Rate, may be specified or measured. If lGetRate is non-zero this

value is measured and placed in this field. If lGetRate is zero an
appropriate value must be placed in the variable. This value nust be
supplied when Random mode is being used.

dCornFrq
 Corner Frequency for RJ+PJ in Hertz. This value is used in

conjunction with the Bit Rate and pattern to determine the maximum
stop count to be used to acquire RJ+PJ data. A lower value increase
acquisition time. The default value is 637e3.

3-11

lHeadOff
 Header offset, valid when external arming only. This offset value can

be used to skip past header information and into the repeating data
pattern stream. This can be useful when analyzing data from disk
drives when the pattern marker may be synchronized with the start of
frame data. The default value is 0.

lFndEftv
Flag to indicate that an effective jitter calculation is to be attempted

lMinEftv, lMaxEftv
Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

lFiltEnb
Flag to enable IDLE character insertion filter. When enabled any edge
measurements that are not within +/-0.5 UI will be discarded.

lGood
 Flag indicates valid output data in structure
tPatn
 Internal representation of pattern, the internal details of this structure

are not important from an application standpoint. The first time
WavGetDcom() is called the pattern is loaded into tPatn which is used
internally for all subsequent acquisition and analysis.

dWndFact, lMaxStop, lCmpMode, lPosRoll, lNegRoll, lAdjustPW
 These values are all used internally, DO NOT ALTER!
tDdjtData
 Raw DCD+DDJ measurements, see DDJT structure later in chapter for

additional details, this structure is not normally directly access by an
application program.

lDdjtRsvd
 Used to track memory allocation for tDdjtData structures
dMeasData
 Raw all-measurements histogram data, only valid when auto-arming is

used. This structure is not normally directly access by an application
program.

lMeasRsvd
 Used to track memory allocation for dMeasData values
dRjpjData
 Raw variance data, this structure is not normally directly access by an

application program.
lRjpjRsvd
 Used to track memory allocation for dRjpjData values
dTfitData
 Raw tail-fit data if tail-fit data is enabled and successful, as indicated

by the lGood variable in the tTfit structure being non-zero. This
structure is not normally directly access by an application program.

lTfitRsvd
 Used to track memory allocation for dTfitData values

3-12

lPeakData
 Tracks detected spikes in RJ+PJ data. This structure is not normally

directly access by an application program.
lPeakNumb
 Count of detected spikes, indicates the number of values in the

lPeakData array.
lPeakRsvd
 Used to track memory allocation for lPeakData values
dFreqData
 Raw FFT output when averaging is enabled. This structure is not

normally directly access by an application program.
lFreqRsvd
 Used to track memory allocation for dFreqData values
dTailData
 Raw tail-fit FFT output when tail-fit and averaging are both enabled.

This structure is not normally directly access by an application
program.

lTailRsvd
 Used to track memory allocation for dTailData values
dHits
 Total samples taken to calculate DDJT, RJ, and PJ values combined.

Gives an indication of the actual data to support the calculated total
jitter number.

dDdjt
 DCD+DDJ jitter number in seconds.
dRang
 Pk-Pk of all-measurements histogram, valid when auto-arming only.
dRjit
 Random jitter number in seconds, for each of the enabled modes.
dPjit
 Periodic jitter number in seconds, for each of the enabled modes.
dTjit
 Total jitter number in seconds, for each of the enabled modes.
dEftvLtDj, dEftvLtRj, dEftvRtDj, dEftvRtRj
 Effective jitter in seconds for each of the enabled modes is stored in

this variables if calculated. In order to calculate the effective jitter
lFndEftv must contain a non-zero value. Since the effective jitter is
calculated by optimizing a curve-fit a result is not guaranteed. If the
curve-fit fails a negative value will be returned in these variables.

tRiseHist
 DCD+DDJ histogram of rising edges
tFallHist
 DCD+DDJ histogram of falling edges
tRiseMeas
 Rising all-measurements histogram, valid when auto-arming only.
tFallMeas
 Falling all-measurements histogram, valid when auto-arming only.

3-13

tNormDdjt
 DCD+DDJvsUI plot, valid when external arming is enabled only.
tHipfDdjt
 High Pass Filtered DCD+DDJvsUI plot, valid when external arming is

enabled only. This is only calculated when dDdjtHpf is a non-
negative number. When calculated, the dDdjt value is adjusted based
on this filter being applied.

tLopfDdjt
 Low Pass filtered DCD+DDJvsUI plot, valid when external arming is

enabled only. This is only calculated when dDdjtHpf is a non-
negative number.

tBathPlot
 Bathtub plots, one for each of the modes enabled in lAcqMode
tEftvPlot
 Effective Bathtub curves if lFndEftv is set and a valid fit is obtained
tSigmNorm
 1-Sigma plots, one for each of the modes enabled in lAcqMode
tSigmTail
 1-Sigma tail-fits, only valid if tail-fit is enabled. One for each of the

modes enabled in lAcqMode
tFreqNorm
 Frequency plots, one for each of the modes enabled in lAcqMode
tFreqTail
 Tail-fit FFT plots, only valid if tail-fit is enabled. One for each of the

modes enabled in lAcqMode

typedef struct
 {
 long lSampCnt;
 long lPad1;
 double dMaxSerr;
 long lPtnReps;
 long lPad2;
 } SPEC;

lSampCnt
 Sample size to use when acquiring data, the default value is 100
dMaxSerr
 Value of standard error that is tolerated, used to identify wrong pattern

or other setup error. The default value is 0.5
lPtnReps
 Patterns to sample across, the default values are 10 for tRateInf and 1

for tDdjtInf and tRjpjInf

3-14

typedef struct
 {
 double dMean;
 double dVars;
 double dMini;
 double dMaxi;
 double dDdjt;
 double dFilt;
 long lNumb;
 long lPad1;
 } DDJT;

dMean
 Average value for this span
dVars
 Variance value for this span
dMini
 Minimum value for this span
dMaxi
 Maximum value for this span
dDdjt
 Static displacement for this span (UI)
dFilt
 DDJT after HPF is applied (UI)
lNumb
 Number of measures in this span

3.1.7 Structure used for Eye Histogram window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 long lPassCnt, lRefEdge;
 long lErrProb;
 long lClokSmp, lFiltSmp;
 long lTailFit, lForcFit;
 long lMinHits;
 long lFndEftv;
 long lMinEftv, lMaxEftv;
 long lPad1;
 double dMinSpan;
 /* Output parameters */
 long lGood;
 long lRiseCnt, lFallCnt;
 long lPad2;
 double dDataMin, dDataMax;
 double dDataSig, dAvgSkew;
 double dUnitInt;
 long lUnitOff;

3-15

long lPad3;
 double dRiseMin, dRiseMax;
 double dFallMin, dFallMax;
 long lRiseBin, lFallBin;
 double dLtSigma[PREVSIGMA];
 double dRtSigma[PREVSIGMA];
 long lSpanCnt;
 long lPad4;
 PLOT tRise, tFall;
 PLOT tRiseProb, tFallProb;
 PLOT tBath;
 TFIT tTfit;
 } EYEH;

tParm
 Contains acquisition parameters, see end of chapter for details
lPassCnt
 WavGetEyeh() can be called repeatedly with the same EYEH

structure. Data is then accumulated in the plot structures. This
parameter tracks acquisitions so far, and may be set to 0 to reset.
When set to 0 the plot structures are flushed. It will be automatically
incremented by the WavGetEyeh() function.

lRefEdge
 Clock edge which all data is in reference to, valid values are:
 EDGE_FALL or EDGE_RISE
 The default value is EDGE_RISE
lErrProb
 Error probability for Total Jitter, the valid range is -1 to -16 and the

default value is -12. This value is used in conjunction with the bathtub
curve after the successful completion of a tail-fit in order to project the
value of Total Jitter.

lClokSmp
 Sample size while acquiring clock rate, the default value is 10000
lFltSmp
 Sample size when finding filter limits, the default value is 1000
lTailFit
 If non-zero a tail-fit will be tried, the default is disabled
lForcFit

If non-zero use the force-fit method, the default is disabled
lMinHits

Minimum hits before attempting a tail-fit in 1000's, the default is 50
lFndEftv

Flag to indicate that an effective jitter calculation is to be attempted
lMinEftv, lMaxEftv

Defines the range of the bathtub curve which is to be used to calculate
an effective jitter value. The defaults for lMaxEftv and lMinEftv are -4
and -12 respectively. The valid range is -1 to -16 and lMinEftv must be
less then lMaxEftv.

dMinSpan
Minimum span between clock and data edges in seconds, can be used
to match trigger delay to correlate with oscilloscopes.

3-16

lGood
 Flag indicates valid output data in structure
lRiseCnt
 Number of hits in rising edge data
lFallCnt
 Number of hits in falling edge data
dDataMin
 Minimum value relative to clock edge
dDataMax
 Maximum value relative to clock edge
dDataSig
 1-Sigma of all values relative to clock
dAvgSkew
 Average of all values relative to clock
dUnitInt
 Measured Unit Interval, this is based on the clock
lUnitOff, dRiseMin, dRiseMax, dFallMin, dFallMax, lRiseBin,
lFallBin, dLtSigma, dRtSigma, lSpanCnt
 These values are all used internally, DO NOT ALTER!
tRise
 Histogram of rising edge data
tFall
 Histogram of falling edge data
tRiseProb
 Probability Histogram of rising edge data
tFallProb
 Probability Histogram of falling edge data
tBath
 Bathtub curves determined from PDF
tEftv
 Effective Bathtub curves if lFndEftv is set and a valid fit is obtained
tTfit
 Structure containing tail-fit info, see end of chapter for details

3.1.8 Structure used for Time Series window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 long lNumb;
 long lPad1;
 double dSpan;
 long lAutoFix;
 /* Output parameters */
 long lGood;
 double dYstd;
 double dAvar;
 double dSumm;
 double dTyme;
 PLOT tMean;
 PLOT tMini;

3-17

 PLOT tMaxi;
 PLOT tTime;
 PLOT tSdev;
 PLOT tPeak;
 } TSER;

tParm
 Contains acquisition parameters, see end of chapter for details
lNumb
 WavGetTser() can be called repeatedly with the same TSER structure.

Data is then accumulated in the plot structures. This parameter tracks
acquisitions so far, and may be set to 0 to reset. When set to 0 the plot
structures are flushed. This parameter is automatically incremented by
the WavGetTser() function.

dSpan
 Time delay between measurements
lAutoFix

If true perform a pulsefind as required
lGood
 Flag indicates valid output data in structure
dYstd
 1-Sigma value calculated on all data
dAvar
 Allan variance calculation
dSumm, dTyme
 These values are all used internally, DO NOT ALTER!
tMean
 Contains the average plot array
tMini
 Contains the minimum plot array
tMaxi
 Contains the maximum plot array
tTime
 Contains the time at which measurements were taken
tSdev
 Contains the 1-Sigma plot array
tPeak
 Contains the (max - min) plot array

3-18

3.1.9 Structure used for Statistics window

typedef struct
 {
 /* Input parameters */
 PARM tParm;
 long lPfnd;
 long lAutoFix;
 /* Output parameters */
 long lGood, lPad1;
 double dMean;
 double dMaxi;
 double dMini;
 double dSdev;
 double dDuty;
 double dFreq;
 double dVmin[2];
 double dVmax[2];
 } STAT;

tParm
 Contains acquisition parameters, see end of chapter for details
tPfnd
 If non-zero a pulse-find is performed before each measure, the default

is to not perform a pulse-find
lAutoFix

If true perform a pulsefind as required
lGood
 Flag indicates valid output data in structure
dMean
 Contains the returned average value
dMaxi
 Contains the returned maximum value
dMini
 Contains the returned minimum value
dSdev
 Contains the returned 1-Sigma value
dDuty
 Contains the returned duty cycle, this is not measured if a TPD

measurement is being performed
dFreq
 Contains the frequency of the signal being measured
dVmin
 Min voltage returned from last pulse-find
dVmax
 Max voltage returned from last pulse-find

3-19

3.1.10 Structure used for Random Data window

typedef struct
 {
 /* Input parameters */
 long lCoun;
 long lPcnt;
 DCOM tDcom;
 /* Output parameters */
 long lGood, lPad1;
 double dDjit;
 double dRjit;
 double dTjit;
 PLOT tSigmTail;
 } RAND;

lCoun
 Count of tail-fits to be performed, use one of the following:
 RAND_AUTO Continue to perform tailfits until RJ

is within some percentage of the
previous pass, see lPcnt below

 RAND_FIT3 Perform 3 tailfits
 RAND_FIT5 Perform 5 tailfits
 RAND_FIT9 Perform 9 tailfits
 RAND_FIT17 Perform 17 tailfits
lPcnt
 Auto-mode succeed percentage, if selected
 RAND_PCNT5 RJ within 5% of previous pass
 RAND_PCNT10 RJ within 10% of previous pass
 RAND_PCNT25 RJ within 25% of previous pass
 RAND_PCNT50 RJ within 50% of previous pass
tDcom
 Random data window uses a DCOM structure to hold most of the

input and output parameters, see the dataCOM section for detailed
information

lGood
 Flag indicates valid output data in structure
dDjit, dRjit, dTjit
 Deterministic, random, and total jitter values
tSigmTail
 1-Sigma plot based on tail-fit results

3-20

3.2 UTILITY STRUCTURES

The following utility structures are used in the standard window functions:

3.2.1 Basic structure used to return plot data

typedef struct
 {
 double *dData;
 long lNumb, lRsvd, lPad1;
 double dXmin, dXmax;
 double dYmin, dYmax;
 double dYavg, dYstd;
 long lXminIndx;
 long lXmaxIndx;
 long lYminIndx;
 long lYmaxIndx;
 double dAltXmin, dAltXmax;
 } PLOT;

dData
 Pointer to y-axis data array
lNumb
 Number of valid data points
lRsvd
 Used to track memory allocation
dXmin, dXmax
 X-axis values for ends of data array
dYmin, dYmax
 Min & Max values in Y-axis data array
dYavg, dYstd
 Average & 1-Sigma values for data array
lXminIndx, lXmaxIndx
 Used by histograms to indicate location of first and last valid bins
lYminIndx, lYmaxIndx
 Indicates the location where the Min & Max values occur in data array
dAltXmin, dAltXmax
 Alternate X-axis values, if applicable. For graphs where it makes sense

an alternate X-axis unit may be calculated. Examples include time or
index on a Jitter Analysis 1-sigma plot, or unit interval or time on a
dataCOM bathtub plot. If no applicable alternate unit is defined these
variables will both be set to zero.

3-21

3.2.2 Structure used for parameters of one side of a tail-fit

typedef struct
{
 double dCoef[3];
 double dDjit;
 double dRjit;
 double dChsq;
 double dLoValu, dHiValu;
 double dMuValu;
 double dEftvDj, dEftvRj;
 } SIDE;

dCoef
 Used by WavGetTfit() to generate idealized tail-fit curves
dDjit
 Deterministic jitter, this side only
dRjit
 Random jitter, this side only
dChsq
 ChiSquare indicator, goodness of fit
dLoValu, dHiValu
 dXval range over which tail was fitted
dMuValu
 Projected dXval where mu was determined
dEftvDj, dEftvRj
 Holds the effective jitter values if calculated. To calculate the effective

jitter lFndEftv must contain a non-zero value. Since the effective jitter
is calculated by optimizing a curve-fit a result is not guaranteed. If the
curve-fit fails a negative value will be returned in these variables.

3.2.3 Structure used to hold tail-fit results for histograms

typedef struct
 {
 long lGood, lPad1;
 SIDE tL, tR;
 double dDjit;
 double dRjit;
 double dTjit;
 } TFIT;

lGood
 Flag to indicate successful tail-fit
tL, tR
 Structures containing individual left & right tail-fit data
dDjit
 Deterministic jitter, from both sides
dRjit
 Random jitter, average from both sides
dTjit
 Total jitter, calculated from bathtub

3-22

3.2.4 Structure used for Acquisition Parameters

typedef struct
 { // Defaults as follows:
 long lFuncNum; // FUNC_PER
 long lChanNum; // 1
 long lStrtCnt; // 1
 long lStopCnt; // 2
 long lSampCnt; // 300
 long lPadLoc1;
 double dStrtVlt; // 0.0
 double dStopVlt; // 0.0
 long lStrtArm; // 1
 long lStopArm; // 1
 long lOscTrig; // CHAN1
 long lOscEdge; // EDGE_RISE
 long lFiltEnb; // 0
 long lPadLoc2;
 double dFiltMin; // -2.49
 double dFiltMax; // 2.49
 long lAutoArm; // ARM_STOP
 long lArm1Edg; // 1
 long lArm2Edg; // 1
 long lPadLoc3;
 double dArm1Vlt; // 0.0
 double dArm2Vlt; // 0.0
 long lArm2Gat; // 0
 long lCmdFlag; // 0
 long lFndMode; // PFND_PEAK
 long lFndPcnt; // PCNT_5050
 long lFndTrg1; // TRIG_ARM1
 long lFndTrg2; // TRIG_ARM1
 long lFndTime[2][6]; // { { 20000, 30000, 100,
 // 20000, 30000, 100, },
 // { 20000, 30000, 100,
 // 20000, 30000, 100 } }
 long lTimeOut; // 2
 long lArmMove; // 0
 long lDsmChan[2]; // MIN_BANK1_CHN

// MIN_BANK2_CHN
 } PARM;

lFuncNum
 Function to measure, use any of the follow:
 2-Channel: FUNC_TPD_PP TPD +/+
 FUNC_TPD_MM TPD -/-
 FUNC_TPD_PM TPD +/-
 FUNC_TPD_MP TPD -/+
 1-Channel: FUNC_TT_P Rising edge time
 FUNC_TT_M Falling edge time
 FUNC_PW_P Positive pulse width
 FUNC_PW_M Negative pulse width
 FUNC_PER Period
 FUNC_FREQ Frequency

3-23

lChanNum
 Channel to measure, the minimum value is 1, the maximum can be

determined by calling DtsMaxChan() This value is normally ignored
on a TPD measurement for DTS207X instruments since there are only
two channels and Chan1 is the implicit Start Channel and Chan2 is the
implicit Stop Channel. However, on SIA3000 there are more channels
available, so the LOWORD defines the Start Channel, and the
HIWORD defines the Stop Channel for TPD measurements.

lStrtCnt
 Channel start count, the minimum value is 1, the maximum can be

determined by calling DtsMaxCnts()
lStopCnt
 Channel stop count, the minimum value is 1, the maximum can be

determined by calling DtsMaxCnts()
lSampCnt
 Sample size, the minimum value is 1, the maximum can be determined

by calling DtsMaxVals()
lStrtVlt
 Start voltage sets the reference voltage used to initiate the time

measurement. The valid range is +/-1.1 volts
lStopVlt
 Stop voltage sets the reference voltage used to terminate the time

measurement. The valid range is +/-1.1 volts
lStrtArm
 Arm to use for start event, only used if lAutoArm is set to

ARM_EXTRN, the minimum value is 1
lStopArm
 Arm to use for stop event, only used if lAutoArm is set to

ARM_EXTRN, the minimum value is 1
lOscTrig
 Channel to use for oscilloscope trigger, use any of the follow:
 TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, TRIG_CHN2
lOscEdge
 Edge to use to trigger oscilloscope, use any of the following:
 EDGE_FALL, EDGE_RISE
lFiltEnb
 Filter enable, any non-zero value enables filters
dFiltMin
 Filter minimum in seconds, only used if lFiltEnb is non-zero
 valid range is +/-2.49 seconds
dFiltMax
 Filter maximum in seconds, only used if lFiltEnb is non-zero
 valid range is +/-2.49 seconds

3-24

lAutoArm
 Auto arm enable and mode, use any of the following:
 ARM_EXTRN Arm using one of the external arms
 ARM_START Auto-arm on next start event
 ARM_STOP Auto-arm on next stop event
 ARM_FIRST Auto-arm insuring start before stop
 Note: this mode is frequency limited
 lArm1Edg
 Arm1 edge to use, only used if lAutoArm is set to ARM_EXTRN

may be either EDGE_FALL or EDGE_RISE
lArm2Edg
 Arm2 edge to use, only used if lAutoArm is set to ARM_EXTRN

may be either EDGE_FALL or EDGE_RISE
dArm1Vlt
 Arm1 voltage, the valid range is +/-1.1 volts
 only used if lAutoArm is set to ARM_EXTRN
dArm2Vlt
 Arm2 voltage, the valid range is +/-1.1 volts
 only used if lAutoArm is set to ARM_EXTRN
lArm2Gat
 Enable Arm2 gating, any non-zero value enables gating
 When gating is enabled Arm2 edge and reference voltages are

associated with gating.
lCmdFlag (previously defined as lStampTm)
 For previous versions this was called lStampTm and defined:

 Any non-zero value enables elapsed time stamping. To perform time

stamping a signal must be present on Arm2, the nature of the signal is
not important - the calibration signal is fine. A successful pulse-find
must have also been performed on Arm2. When time stamping is
enabled an array of time data can be downloaded after a sample is
acquired using the DtsGetTime() function. Each value in this array
represents the time at which it's sample was taken. When time
stamping is enabled the maximum value of lSampCnt is one half its
normal value.

 Starting with this release this variable has been renamed to lCmdFlag
and it now is defined as a bitfield to enable a number of special
features. At this time the only documented feature is time stamping
which is enabled by setting bit0 to 1. All other bits are reserved and
should be set to 0. On the SIA3000 there is no need to attach a signal
to Arm2 in order to initialize the time stamping hardware.

lFndMode
 Pulse find mode, may be one of the following:

 PFND_FLAT Use flat algorithm for pulse-find calculation
 PFND_PEAK Use peak value for pulse-find calculation
 PFND_STRB Use strobing method for pulse-find calc.

3-25

 lFndPcnt
 Pulse find percentage, may be one of the following:
 PCNT_5050 Use 50/50 level for pulse-find calculation
 PCNT_1090 Use 10/90 level for pulse-find calculation
 PCNT_9010 Use 90/10 level for pulse-find calculation
 PCNT_USER Do NOT perform pulse-find, manual mode
 When this mode is selected valid voltages
 must be loaded in the lStrtVlt, lStopVlt,
 lArmVlt1, and lArmVlt2 parameters
 PCNT_2080 Use 20/80 level for pulse-find calculation
 PCNT_8020 Use 80/20 level for pulse-find calculation
 lFndTrg1
 Ch1 StrobePF trigger, only valid if lFndMode is PFND_STRB
 May be TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, or TRIG_CHN2
lFndTrg2
 Ch2 StrobePF trigger, only valid if lFndMode is PFND_STRB
 May be TRIG_ARM1, TRIG_ARM2 TRIG_CHN1, or TRIG_CHN2
lFndTime
 StrobePF times, only valid if lFndMode is PFND_STRB
 Contains data pertaining to time range over which to perform a

strobing pulse-find, all values are in picoseconds. Values are
contained in a two dimensional array, the first index specifies which
channel the data pertains to, the second index pertains to the following
data:

 max_start_delay, max_stop_delay, max_step_increment
 min_start_delay, min_stop_delay, min_step_increment
lTimeOut
 Seconds for timeout before returning an error
lArmMove
 Defined for SIA300 only. This variable controls an arming delay that

can be applied to the arming source. It can be applied to either an
external arm source, or the channel itself if you are auto-arming.
Values in the range of –20 to 20 are acceptable, each step represents a
50ps delay from nominal.

lDsmChan
 DSM channel select, determines which channel of the optional switch

matrix is selected if available. The first digit specifies the bank, the
second digit specifies the channel. Valid values are 11-18 for the first
bank and 21-28 for the second bank.

3-26

3.2.5 Structure with FFT window and analysis parameters
typedef struct
 { // Defaults as follows:
 long lWinType; // FFT_KAI
 long lPadMult; // 4
 double dCtrFreq; // 2500
 double dRngWdth; // 100
 double dAlphFct; // 8.0
 } FFTS;
lWinType
 Window type, use one of the following:

 FFT_RCT Rectangular window
 FFT_KAI Kaiser-Bessel window
 FFT_TRI Triangular window
 FFT_HAM Hamming window
 FFT_HAN Hanning window
 FFT_BLK Blackman window
 FFT_GAU Gaussian window

lPadMult
 Power of 2 to use for padding (0 - 5)
dCtrFreq
 Frequency over which to assess dYavg in plot array (Hz)
dRngWdth
 Width over which to assess dYavg (Hz)
dAlphFct
 Alpha factor when using Kaiser-Bessel window

3.2.6 Structure used for Jitter Generator Parameters
typedef struct
 { // Defaults as follows:
 long lSnthEnb; // 0
 long lOutpEnb; // 0
 double dOutpFrq; // 500 MHz
 double dDutyCyc; // 50
 long lSyncTyp; // SYNC_BIT
 long lSyncDiv; // 1
 double dSyncFrq; // 500 MHz
 double dEftvFrq; // 500 MHz
 long lOutpLvl; // LEVL_CUSTOM1
 long lSyncLvl; // LEVL_CUSTOM1
 double dOutpAmp; // 1.0
 double dSyncAmp; // 1.0
 double dOutpOff; // 0.0
 double dSyncOff; // 0.0
 long lOutpTrm; // TERM_GRND
 long lSyncTrm; // TERM_GRND
 long lJitEnab; // 0
 long lJitMode; // JITT_PER
 long lJitUnit; // UNIT_SEC
 long lPadLoc1;
 double dJitAmpl; // 0
 double dJitFreq; // 1 MHz
 long lPadLoc2;
 long lJitDist; // DIST_SIN
 } JGEN;

3-27

lSnthEnb
 Synthesizer enabled if non-zero
lOutpEnb
 Output enabled if non-zero
dOutpFrq
 Main clock frequency in Hertz
dDutyCyc
 Duty cycle [0.0 < dDutyCyc < 100.0]
lSyncTyp
 Sync signal source, use any of the following:
 SYNC_JIT Synchronized with jitter source
 SYNC_BIT Generated by bit clock
 SYNC_IND Independent of jitter or output
lSyncDiv
 Sync divider, only used if lSyncTyp is SYNC_BIT or SYNC_IND
dSyncFrq
 Sync frequency in Hertz, only used if lSyncTyp is SYNC_IND
dEftvFrq
 Effective Sync Frequency – this is Read Only! This is calculated by the

device based on the current settings of lSyncType, lSyncDiv, and lSyncFrq.
lOutpLvl
 Output level, the following are valid values:
 LEVL_ECLGND -0.9 to –1.7 terminated 50Ω to GND
 LEVL_ECLNEG2 -0.9 to –1.7 terminated 50Ω to –2V
 LEVL_ECLOPEN -0.9 to –1.7 terminated Open Circuit
 LEVL_PECLPOS3 4.2 to 3.2 terminated 50Ω to +3V
 LEVL_PECLOPEN 4.2 to 3.2 terminated Open Circuit
 LEVL_TTLGND 2.65 to 0.15 terminated 50Ω to GND
 LEVL_TTLOPEN 2.65 to 0.15 terminated Open Circuit
 LEVL_CMOS3GND 2.65 to 0.15 terminated 50Ω to GND
 LEVL_CMOS3OPN 2.65 to 0.15 terminated Open Circuit
 LEVL_CMOS5OPN 2.65 to 0.15 terminated Open Circuit
 LEVL_CUSTOM1 User selectable set
 LEVL_CUSTOM2 User selectable set
 LEVL_CUSTOM3 User selectable set
lSyncLvl
 Sync level, valid values are the same as those defined for lOutpLvl

above except that LEVL_ECLGND is not valid.
dOutpAmp
 Output amplitude if one of the three custom levels is selected
dSyncAmp
 Sync amplitude if one of the three custom levels is selected
dOutpOff
 Output offset if one of the three custom levels is selected
dSyncOff
 Sync offset if one of the three custom levels is selected

3-28

lOutpTrm
 Output termination if one of the three custom levels is selected, use

any of the following:
 TERM_GRND Terminated is 50Ω to 0 Volts
 TERM_NEG2 Terminated is 50Ω to -2 Volts
 TERM_POS3 Terminated is 50Ω to +3 Volts
 TERM_OPEN Terminated to Open Circuit
lSyncTrm
 Sync termination if one of the three custom levels is selected, use any

of the values listed for lOutpTrm
lJitEnab
 Jitter enabled if non-zero
lJitMode
 The means by which jitter amplitude is specified, use one of the

following:
 JITT_PER Specified on a single period basis
 JITT_CUM Specified as a maximum across

multiple repetitions of the waveform
lJitUnit
 The units by which jitter amplitude is specified, use one of the

following:
 UNIT_SEC Specified in seconds
 UNIT_UI Specified in unit intervals [0.0 – 1.0]
 UNIT_DEG Specified in degrees [0.0 – 360.0]
dJitAmpl
 Jitter amplitude in selected units
dJitFreq
 Jitter frequency in Hertz
lJitDist
 Jitter distribution, may be one of the following:

 DIST_SIN Sine waveform
 DIST_SAW Sawtooth waveform
 DIST_TRI Triangular waveform
 DIST_SSC Spread Spectrum Curve
 DIST_RND Random Distribution

3-29

3.2.7 Structure used for Arm Generator Parameters

typedef struct
 { // Defaults as follows:
 PARM tParm; // Same as PARM in 3.2.4
 // except: lSampCnt = 50

// and lAutoArm = ARM_EXTRN
 char bPtnBits[10]; // All zeros
 char bMskBits[10]; // All zeros
 char sPtnName[128]; // “sof.ptn”
 long lInvtPtn; // 0
 long lCyclDly; // 0
 long lFineDly; // 0
 long lFunctSw; // 0
 long lSpeedSw; // 0
 long lProtoSw; // 0
 long lCommDet; // 0
 long lCDlyByp; // 0
 long lEdgeCnt; // 0x0F
} AGEN;

tParm
 This structure contains the DT207x settings to be used when

optimizing the marker position with the ArmFindDly() function.
 This is mainly used to specify the Arm and Channel, but may also be

used to override default voltage thresholds or other parameters.
bPtnBits, bMskBits
 These fields are used to hold the internal representation of the pattern,

the details of these fields is not important from an application
standpoint. The first time ArmSetParm() is called the pattern is
loaded into these fields from the file named in the sPtnName field.
This internal representation is used for all subsequent operations.

sPtnName
 Name of pattern file to be used, the file must exist or an error will be

returned. The first time ArmSetParm() is called, appropriate values
are loaded into the bPtnBits and bMskBits fields. If the pattern file is
to be changed, both theses fields should be cleared to all zeros so that
the new pattern will be loaded on the next call to ArmSetParm(). The
default file is sof.ptn

lInvtPtn
 Invert the pattern bits if non-zero, this is used to compensate for

sending a polarity sensitive signal through an amplifier stage which
inverts the signal. This parameter is not used if lFunctSw is set to
Edge Count Mode.

lCyclDly
 Cycle Delay Increment [0 - 39]. The value of each is increment is

dependent on the protocol. For 1X or 2X Fibre Channel each
increment is equal to 941ps. For 1X or 2X GigaBit Ethernet each
increment is equal to 800ps.

3-30

lFineDly
 Fine Delay Increment [0 - 255]. Each increment is equal to

approximately 15.686ps, giving a total possible delay of 4ns.
lFunctSw
 Marker Generation Function, the following are valid values:
 0 Pattern Match Mode
 1 Edge Count Mode
lSpeedSw
 Speed Switch, the following are valid values:
 0 1X Fibre Channel or GigaBit Ethernet
 1 2X Fibre Channel or GigaBit Ethernet
 This parameter is not used if lFunctSw is set to Edge Count Mode.
lProtoSw
 Protocol Switch, the following are valid values:
 0 Fibre Channel
 1 GigaBit Ethernet
 This parameter is not used if lFunctSw is set to Edge Count Mode.
lCommDet
 Enable comma detect in the AG-100’s front end SERDES if non-zero.
lCDlyByp
 Bypass cycle based delay circuitry if non-zero.
lEdgeCnt
 Edge count to be used if lFunctSw is set to Edge Count Mode. It

should be entered as either the count of positive edges or the count of
negative edges (they must be the same), but not the sum of both.

3-31

This page intentionally left blank.

3-32

CHAPTER 4 – LOW LEVEL FUNCTIONS

The WAVECREST Production API provides a number of low-level
functions to allow programmers to quickly integrate DTS207x
functionality into their applications. Aside from the initialization and
termination functions, these functions are not necessary if the high-level
window function calls detailed in Chapter 2 are used. However, these
functions are provided in order to simplify many of the details involved in
a programmer developing their own algorithms.

4.1 INITIALIZATION AND TERMINATION FUNCTIONS

These functions are provided to perform initialization tasks and cleanup
prior to termination.

4.1.1 Initialize Device
long DtsInitDev (char *sDevName, long lBrdNumb,
 long lBrdAddr);
Input:
 sDevName Pointer to device name if UNIX platform
 lBrdNumb GPIB board number
 lBrdAddr GPIB board address
Return:
 0 on Success or Error Code on Failure
Example:
 DtsInitDev (“dev5”, 0, 5);

This function must be called once at the beginning of your application in order
to pass information concerning the GPIB configuration. The first parameter is
used to specify the GPIB device name on UNIX platforms and is ignored on
Microsoft Windows. The second parameter is the board number, and the final
parameter is the device number.

A successful call to DtsInitDev() must be accomplished before any other calls
to the WAVECREST Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

4-1

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and
 symbolic name hpib.
7,5 Device at bus address 5, and
 connected to an interface card at
 logical unit 7.
lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
 address 128.10.0.3 which contains an
 hpib interface with device at bus
 address 5.
lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
 hpibsrv.wave.com which contains an
 interface card at logical unit 7 with
 primary device at bus address 5.

4.1.2 Cleanup Prior to Application Termination
long DtsExitDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 DtsExitDev ();

Before terminating the application, the supplied cleanup function should be
called. DtsExitDev() closes the GPIB device driver. After this cleanup has
been performed the application may terminate normally.

4-2

4.2 INFORMATION FUNCTIONS

These functions provide various information services.

4.2.1 Get API Version
long DtsGetVers (void);

Input:
 None
Return:
 Major version in high byte, minor version in low byte
Example:
 VerNum = DtsGetVers ();

This function may be called to determine the current API version.

4.2.2 Get Maximum Channel Number
long DtsMaxChan (void);

Input:
 None
Return:
 Maximum channel number supported on this device
Example:
 MaxChan = DtsMaxChan ();

This function may be called to determine the maximum channel number
on this device. The first channel is always number 1, and current devices
only have 2 channels. This function is intended to support future
expansion when devices with more than two channels become available.

4-3

4.2.3 Get Maximum Start/Stop Count Values
long DtsMaxCnts (void);

Input:
 None
Return:

Maximum number of start/stop count values obtained in a single
measurement

Example:
 DtsMaxCnts ();

This function may be called to determine the maximum number of start/stop
counts that can be configured. This function is intended to support future
expansion when additional counter values may be allowed.

4.2.4 Get Maximum Sample Values
long DtsMaxVals (void);

Input:
 None
Return:

Max. number of sample values obtained in a single measurement
Example:
 DtsMaxVals ();

This function may be called to determine the maximum number of samples that
can be taken with a single acquisition. This function is intended to support future
expansion when additional samples may be taken in a single measurement.

4.2.5 Get Minimum Voltage Possible
double DtsMinVolt (void);

Input:
 None
Return:

Minimum voltage that can be set using USER voltages
Example:
 DtsMinVolt ();

This function may be called to determine the minimum voltage that can be
specified using USER voltages. This function is intended to support future
expansion when a different voltage range may be allowed.

4-4

4.2.6 Get Maximum Voltage Possible
double DtsMaxVolt (void);

Input:
 None
Return:

Maximum voltage that can be set using USER voltages
Example:
 DtsMaxVolt ();

This function may be called to determine the maximum voltage that can be
specified using USER voltages. This function is intended to support future
expansion when a different voltage range may be allowed.

4.3 UTILITY FUNCTIONS

These functions provide various utility services.

4.3.1 Enable or Disable Front Panel Display
long DtsSetDisp (long lDisp);

Input:
 lDisp Non-zero value to enable, zero to disable
Return:
 0 on Success or Error Code on Failure
Example:
 DtsSetDisp (1);

This function may be called to turn the front panel display on or off. Performance
is improved if the front panel display is disabled.

4.3.2 Send Acquisition Parameters to Device
long DtsSetParm (PARM *tParm);

Input:
 tParm Pointer to Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 DtsSetParm (&tParm);

This function may be called to download the complete set of acquisition
parameters to the device. Note that the Parameter Structure contains all the
information necessary to completely define a basic measurement. After
successfully issuing this command an acquisition may be performed using the
DtsRqstAcq() or DtsGetData() command.

4-5

In order to optimize performance, this function keeps track of parameters that
have been configured and only downloads parameters that have changed since the
last time it was called. However, parameters which are manually sent using the
DtsTalkDev() function will not be tracked, and could therefore cause
unpredictable results. If this function is used to configure parameters, it should be
used exclusively, and no parameters should be manually sent.

4.3.3 Perform a Pulse-find Operation
long DtsPulsFnd (PARM *tParm);

Input:
 tParm Pointer to Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 DtsPulsFnd (&tParm);

This function is used to perform a pulse-find operation based on the channel,
arming, and pulse-find options in the Parameter Structure. On successful
completion, the resulting voltages are returned in the appropriate fields of the
Parameter Structure.

A higher level function WavPulsFnd() exists, which should be used in
conjunction with the higher level window functions. In particular Oscilloscope
and Time Digitizer windows require the extra steps taken by the higher level
pulse-find function.

4.3.4 Update Voltage Information
long DtsGetVolt (PARM *tParm);

Input:
 tParm Pointer to Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 DtsGetVolt (&tParm);

This function is used to update the threshold voltage information in the Parameter
Structure. On successful completion, the threshold voltages currently active in
the DTS207X are returned in the appropriate fields of the Parameter Structure.

4-6

4.3.5 Device Reset
long DtsRsetDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 DtsRsetDev ();

This function will reset the device to the power-up state. The existing
machine state is lost, and all parameters are restored to their default values.

4.4 COMMUNICATION FUNCTIONS

These functions provide various communication services.

4.4.1 Send Command String to Device
long DtsTalkDev (char *sCmnd);

Input:
 sCmnd Pointer to Command String
Return:
 0 on Success or Error Code on Failure
Example:
 DtsTalkDev (“:ACQ:COUN 32000”);

This function may be used to send individual command strings to the device.
This function should be used whenever no response is expected from the device.

4.4.2 Send Command String and Receive ASCII Response
long DtsRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
 sCmnd Pointer to Command String

sSval Pointer to Buffer to Hold Response String
 lLeng Length of Buffer to Hold Response String
Return:
 0 on Success or Error Code on Failure
 Response is placed in Response Buffer on Success
Example:
 char buffer[128];
 DtsRqstAsc (“:ACQ:FUNC?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4-7

4.4.3 Send Command String and Receive Double Precision
Floating Point Number
long DtsRqstDbl (char *sCmnd, double *dDval);

Input:
 sCmnd Pointer to Command String

dDval Pointer to double to Hold Response
Return:
 0 on Success or Error Code on Failure
 Response is placed in Double Precision Number on Success
Example:
 double mean;
 DtsRqstDbl (“:MEAS:AVER?”, &mean);

This function may be used to send individual command strings to the device when
a Double Precision Floating Point number is expected as a response.

4.4.4 Send Command String and Receive Long Integer as
Response
long DtsRqstInt (char *sCmnd, long *lIval)

Input:
 sCmnd Pointer to Command String
 lIval Pointer to Long Integer to Hold Response
Return:
 0 on Success or Error Code on Failure
 Response is placed in Long Integer on Success
Example:
 long switch;
 DtsRqstInt (“:CHAN:SWIT?”, &switch);

This function may be used to send individual command strings to the
device when a Long Integer is expected as a response.

4-8

4.5 ACQUISITION FUNCTIONS

These functions provide various acquisition services.

4.5.1 Request Data Acquisition
long DtsRqstAcq (long lFunc, double *dMean, double *dSdev,
 double *dMini, double *dMaxi);

Input:
 lFunc Function Number – any of the following constants:
 Constant Description Channels

FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

dMean Pointer to double to hold Mean or NULL
dSdev Pointer to double to hold 1-Sigma or NULL
dMini Pointer to double to hold Minimum or NULL
dMaxi Pointer to double to hold Maximum or NULL

Return:
 0 on Success or Error Code on Failure
Example:
 double mean;
 DtsRqstAcq (FUNC_PER, &mean, NULL, NULL, NULL);

This function may be used to request that a data acquisition be performed
with statistics returned. If you do not require any of the individual
statistics to be returned, you can pass NULL instead of a valid pointer.

4-9

4.5.2 Request Data Acquisition with Raw Data Returned
long DtsGetData (long lFunc, double *dMean, double *dSdev,
 double *dMini, double *dMaxi,
 long *lNumb, void *pData, long lSize);

Input:
 lFunc Function Number – any of the following constants:
 Constant Description Channels

FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

dMean Pointer to double to hold Mean or NULL
dSdev Pointer to double to hold 1-Sigma or NULL
dMini Pointer to double to hold Minimum or NULL
dMaxi Pointer to double to hold Maximum or NULL
lNumb Pointer to Long Integer to hold Number of Raw

Data Values
pData Pointer to Data Array to hold Raw Data Values
lSize Long Integer Indicating size of Data Type for Raw

Data Values
Return:
 0 on Success or Error Code on Failure
Example:
 long numb;
 double *data = malloc (32000 * sizeof (double));
 DtsGetData (FUNC_PER, &mean, NULL, NULL, NULL,
 &numb, data, sizeof (double));

This function may be used to request that a data acquisition be performed with
statistics and raw data values returned. If you do not require any of the individual
statistics to be returned, you can pass NULL instead of a valid pointer. The
application is responsible for allocating a sufficient data array to contain all of the
raw data values. The size returned in “lNumb” may be different than would be
expected by the sample size due to filters being enabled.

4-10

4.5.3 Perform Analysis Macro
long DtsGetMacr (long lCmnd, long lFunc, long lChan,
 long lStrt, long lStop, long lIncr,
 long lXtra, float *fData, long lDesc);

Input:
 lCmnd Type of Analysis Macro – one of the following:
 Constant Description

ANAL_FUNC Function analysis macro
ANAL_JITT Jitter analysis macro
ANAL_RANG Range analysis macro

 lFunc Function Number – any of the following constants:
 Constant Description Channels

FUNC_TPD_PP TPD +/+ 2-Chan
FUNC_TPD_MM TPD -/- 2-Chan
FUNC_TPD_PM TPD +/- 2-Chan
FUNC_TPD_MP TPD -/+ 2-Chan
FUNC_TT_P Rising edge 1-Chan
FUNC_TT_M Falling Edge 1-Chan
FUNC_PW_P Positive pulse width 1-Chan
FUNC_PW_M Negative pulse width 1-Chan
FUNC_PER Period 1-Chan
FUNC_FREQ Frequency 1-Chan

lChan Channel to perform macro on: 1 or 2
lStrt, lStop, lIncr, lXtra
 Parameters which are based on sCmnd as follows:

ANAL_FUNC
 lStrt Beginning start count
 lStop Ending start count
 lIncr Start Count Increment
 lXtra Relationship of Stop Count to Start
 the following constants may be used:

 Constant Description
 ANL_FNC_FIRST Arm start first
 ANL_FNC_PLUS1 Stop = Start+1
 ANL_FNC_START Stop = Start

ANAL_JITT
 lStrt Start count for all measurements
 lStop Beginning Stop count
 lIncr Stop Count Increment
 lXtra Ending Stop count

ANAL_RANG
 lStrt Start count for all measurements
 lStop Beginning Stop count
 lIncr Stop Count Increment
 lXtra Ending Stop count

4-11

fData Pointer to Single Precision Data Array to hold
Event Data

lDesc Descriptor indicating values per Event defined as
follows:

ANAL_FUNC
 2 Mean and Std. Deviation
 4 Mean Std. Deviation, Min, & Max

ANAL_JITT
 2 Std. Deviation and Mean
 3 Std. Deviation, Min, & Max

ANAL_RANG
 2 Std. Deviation and Mean
 3 Std. Deviation, Min, & Max
Return:
 0 on Success or Error Code on Failure
Example:
 long ValuesPerEvent = 2;

long StartCount = 1, StopIncr = 1;
 long MinStopCount = 2, Spans = 250;
 long MaxStopCount = MinStopcount + Spans – 1;
 float *data = malloc (Spans * ValuesPerEvent * sizeof (float));
 DtsGetMacr (ANAL_JITT, FUNC_PER, 1, StartCount,

MinStopCount, StopCountIncr, MaxStopCount, data,
ValuesPerEvent);

This function may be used to improve performance when statistics are required
across a series of spans. These macros are primarily suited for the Jitter Analysis
and Function Analysis windows. The results are returned in a single interleaved
array of floats. The application is responsible for allocating a sufficient data array
to contain the entire series of statistics.

4.5.4 Request Time Stamp Data
long DtsGetTime (void *pData, long lNumb);

Input:

pData Pointer to array of doubles to hold Time Values
lNumb Number of Time Values to Read

Return:
 0 on Success or Error Code on Failure
Example:
 long numb;
 double *data = malloc (16000 * sizeof (double));
 double *time = malloc (16000 * sizeof (double));
 DtsGetData (FUNC_PER, &mean, NULL, NULL, NULL,
 &numb, data, sizeof (double));
 DtsGetTime (time, numb);

4-12

This function may be used to request the time stamp data after a data acquisition
is performed. It is only valid when elapsed time stamping is enabled (stamp_tm
field enabled in PARM structure). Note that when time stamping is enabled only
half the maximum sample size is available (the DtsMaxVals() function can be
used to obtain the maximum sample size). Also note that a signal must be
present on Arm2 with arming enabled, and a valid pulse-find must have been
previously completed. The calibration signal is suitable for this purpose.

This function returns an array of time values detailing when measurements were
taken, these values are returned in seconds. By analyzing this array, the average
sampling rate can be determined.

4.5.5 Request Duty Cycle
long DtsDtyCycl (double *dDcyc);

Input:

dDcyc Pointer to double to hold Duty Cycle
Return:
 0 on Success or Error Code on Failure
Example:
 double duty;
 DtsDtyCycl (&duty);

This function may be used to request that a duty cycle measurement be performed.

4.5.6 Request Strobing Oscilloscope Data
long DtsStrbWin (long lChan, long lStar, long lStop,
 long lIncr, double *dMean, long *lNumb,
 double *dData);

Input:

lChan Channel to be measured
lStar Start of Strobe Window in picoseconds, valid range

is 20,000 – 100,000,000
lStop End of Strobe Window in picoseconds, valid range

is 20,000 – 100,000,000
lIncr Increment between strobed values, 10 is the

minimum valid value
dMean Pointer to double to hold average voltage
lNumb Pointer to Long Integer to hold Number of Raw

Data Values
dData Pointer to array of doubles to hold Voltage Values

4-13

Return:
 0 on Success or Error Code on Failure
Example:
 long numb;
 long values = (40000 – 20000) / 10 + 1;
 double mean, *data = malloc (values * sizeof (double));
 DtsStrbWin (1, 20000, 40000, 10, &mean, &numb, data);

This function may be used to request an array of voltage data from the strobing
oscilloscope. The trigger source and voltage threshold must have been previously
set. The application is responsible for allocating a sufficient data array to contain
all of the raw data values.

4.6 CALIBRATION FUNCTIONS

These functions provide various calibration services.

4.6.1 Request External Calibration
long DtsExtnCal (long lDoDC, long (*pNext)(void));

Input:
 lDoDC A non-zero value causes a DC calibration to be

performed first
pNext Pointer to a function which is called whenever the

user must be prompted to change input source, if a
non-zero value is returned execution is continued, if
0 is returned execution is aborted

Return:
 0 on Success or Error Code on Failure
Example:

char *prompt[] = {"\nConnect Ch1 to Cal1 AND Ch2 to Cal2...",
 "\nCross cables at calibration signals..." };

long mesg;

long pNext (void)
{
printf (prompt[mesg++]);
getch ();
return 1;
}

void main (void)

{
mesg = 0;
if (DtsExtnCal (0, pNext))

printf ("\nAborted due to error...");
}

4-14

This function may be used to request that an external calibration be performed.
Since user interaction is required during the calibration, a callback function must
be passed to this function which is called allowing the application to provide
prompts as required.

4.6.2 Request Internal Calibration
long _stdcall DtsIntnCal (long lMult);

Input:
lMult Multiplier indicating the length of calibration

Return:
 0 on Success or Error Code on Failure
Example:

DtsIntnCal (1);

This function may be used to request that an internal calibration be performed.
A multiplier is provided which lengthens the calibration time, thereby
increasing the quality of the calibration. The standard calibration time is
approximately 5-1/2 minutes.

4.6.3 Request Strobe Calibration
long DtsStrbCal (long (*pNext)(void));

Input:
pNext Pointer to a function which is called whenever the

user must be prompted to change input source, if a
non-zero value is returned execution is continued, if
0 is returned execution is aborted

Return:
 0 on Success or Error Code on Failure
Example:

char *prompt[] = {"\nConnect Cal1 to Ch1 AND Cal2 to Arm1..",
 "\nMove Cal2 from Arm1 to Arm2...........",
 "\nMove Cal1 from Ch1 to Ch2.............", };
long mesg;

long pNext (void)

{
printf (prompt[mesg++]);
getch ();
return 1;
}

void main (void)
{
mesg = 0;
if (DtsStrbCal (pNext))

printf ("\nAborted due to error...");
}

4-15

This function may be used to request that a strobe calibration be performed.
Since user interaction is required during the calibration, a callback function must
be passed to this function which is called allowing the application to provide
prompts as required.

4.7 GENERIC GPIB COMMUNICATION FUNCTIONS

These functions provide access to generic GPIB devices. They can be used to
access pattern generators, voltmeters, etc. This interface handles the low-level
communication tasks. However, knowledge of the programming language
specific to the target device will be required.

4.7.1 Open a Generic GPIB Device
long GpibDevOpn (char *sDevName, long lBrdNumb,
 long lBrdAddr);
Input:
 sDevName Pointer to device name if UNIX platform
 lBrdNumb GPIB board number
 lBrdAddr GPIB board address
Return:
 A valid device descriptor on Success or DTS_ERROR on Failure
Example:
 GpibDevOpn (“dev5”, 0, 5);

This function must be called once at the beginning of your application in order to
pass information concerning the GPIB configuration. The first parameter is used
to specify the GPIB device name on UNIX platforms and is ignored on Microsoft
Windows. The second parameter is the board number, and the final parameter is
the device number.

A successful call to GpibDevOpn() must be accomplished before any other calls
to the Wavecrest Production API concerning this device.

The device descriptor that is returned must be used on all subsequent calls to
access this device.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

4-16

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and
 symbolic name hpib.
7,5 Device at bus address 5, and connected
 to an interface card at logical unit 7.
lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP address
 128.10.0.3 which contains an hpib interface
 with device at bus address 5.
lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
 hpibsrv.wave.com which contains an
 interface card at logical unit 7 with
 primary device at bus address 5.

4.7.2 Read Data from a Generic GPIB Device
long GpibDevGet(long lDevNumb, char *sBuff, long *lNumb);

Input:
 lDevNumb Device descriptor returned by GpibDevOpn

sBuff Pointer to buffer to hold response
 lNumb Pointer to Long to hold length of response.

On Entry this variable should contain the
number of byte to attempt to read. On return
it will be updated to reflect the actual
number of bytes read.

Return:
 0 on Success or Non-Zero number on Failure
 Response is placed in Response Buffer on Success
Example:
 long lDevNum;
 char buffer[256];
 lDevNum = GpibDevOpn (“dev6”, 0, 6);
 GpibDevSnd (lDevNum, “*IDN?”);
 GpibDevGet (lDevNum, buffer, strlen (buffer));

This function may be called to read data back from a generic GPIB device.
You normally use this command in conjunction with a GpibDevSnd()
command requesting information. The GpibDevGet() command is then
used to retrieve the response.

4-17

4.7.3 Send Data to a Generic GPIB Device
long GpibDevSnd (long lDevNumb, char *sCmnd);

Input:
 lDevNumb Device descriptor returned by GpibDevOpn

sCmnd Pointer to command string
Return:
 0 on Success or Non-Zero number on Failure
Example:
 long lDevNum;
 lDevNum = GpibDevOpn (“dev6”, 0, 6);
 GpibDevSnd (lDevNum, “*RST?”);

This function may be called to send data to a generic GPIB device. A
successful call to GpibDevOpn() must have been previously performed in
order to obtain a device descriptor to the device.

4.7.4 Cleanup Prior to Application Termination
long GpibDevCls (long lDevNumb);

Input:
 lDevNumb Device descriptor returned by GpibDevOpn
Return:
 0 on Success or Error Code on Failure
Example:
 long lDevNum;
 lDevNum = GpibDevOpn (“dev6”, 0, 6);
 GpibDevCls (lDevNum);

Before terminating the application, the supplied cleanup function should
be called. GpibDevCls() closes the GPIB device driver. After this
cleanup has been performed the application may terminate normally.

4-18

4.8 DTS550 JITTER GENERATOR FUNCTIONS

These functions provide access to a Wavecrest DTS550 Jitter Generator.

4.8.1 Initialize Jitter Generator Device
long GenInitDev (char *sDevName, long lBrdNumb,
 long lBrdAddr);
Input:
 sDevName Pointer to device name if UNIX platform
 lBrdNumb GPIB board number
 lBrdAddr GPIB board address
Return:
 0 on Success or Error Code on Failure
Example:
 GenInitDev (“dev5”, 0, 5);

This function must be called once at the beginning of your application in
order to pass information concerning the GPIB configuration. The first
parameter is used to specify the GPIB device name on UNIX platforms
and is ignored on Microsoft Windows. The second parameter is the board
number, and the final parameter is the device number.

A successful call to GenInitDev() must be accomplished before any other
calls to a Jitter Generator using the Wavecrest Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and
 symbolic name hpib.
7,5 Device at bus address 5, and
 connected to an interface card at
 logical unit 7.
lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
 address 128.10.0.3 which contains an
 hpib interface with device at bus
 address 5.
lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
 hpibsrv.wave.com which contains an
 interface card at logical unit 7 with
 primary device at bus address 5.

4-19

4.8.2 Cleanup Prior to Application Termination
long GenExitDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 GenExitDev ();

Before terminating the application, the supplied cleanup function should
be called. GenExitDev() closes the GPIB device driver. After this
cleanup has been performed the application may terminate normally.

4.8.3 Enable or Disable Front Panel Display
long GenSetDisp (long lDisp);

Input:
 lDisp Non-zero value to enable, zero to disable
Return:
 0 on Success or Error Code on Failure
Example:
 GenSetDisp (1);

This function may be called to turn the front panel display on or off.

4.8.4 Get Jitter Generator Setup Parameters
long GenGetParm (JGEN *tJgen);

Input:
 tJgen Pointer to Jitter Generator Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 GenGetParm (&tJgen);

This function may be called to retrieve the complete set of jitter generator
parameters. Note that the Jitter Generator Parameter Structure contains all the
information necessary to completely define an output state.

4-20

4.8.5 Send Jitter Generator Setup Parameters
long GenSetParm (JGEN *tJgen);

Input:
 tJgen Pointer to Jitter Generator Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 GenSetParm (&tJgen);

This function may be called to download the complete set of jitter generator
parameters. Note that the Jitter Generator Parameter Structure contains all the
information necessary to completely define an output state.

In order to optimize performance, this function keeps track of parameters that
have been configured and only downloads parameters that have changed since the
last time it was called. However, parameters which are manually sent using the
GenTalkDev() function will not be tracked, and could therefore cause
unpredictable results. If this function is used to configure parameters, it should be
used exclusively, and no parameters should be manually sent.

4.8.6 Fill a Jitter Generator Structure with Default Values
void GenDefParm (JGEN *tJgen);

Input:
 tJgen Pointer to Jitter Generator Parameter Structure
Return:
 None
Example:
 JGEN tJgen;
 GenDefJgen (&tJgen);

This function is used to fill a Jitter Generator Parameter Structure with default
values. These parameters could then be downloaded to the DTS550 by calling the
GenSetParm() function. Using this function insures that all parameters contain
reasonable values.

It is not necessary to clear a Parameter Structure using the standard memset()
function prior to calling this function, as no dynamic memory allocation
information is contained within the Parameter Structure.

4-21

4.8.7 Jitter Generator Reset
long GenRsetDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 GenRsetDev ();

This function will reset the device to the power-up state. The existing machine
state is lost, and all parameters are restored to their default values.

4.8.8 Send Command String to Device
long GenTalkDev (char *sCmnd);

Input:
 sCmnd Pointer to Command String
Return:
 0 on Success or Error Code on Failure
Example:
 GenTalkDev (“:JITT:FREQ MAX”);

This function may be used to send individual command strings to the device.
This function should be used whenever no response is expected from the device.

4.8.9 Send Command String and Receive ASCII Response
long GenRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
 sCmnd Pointer to Command String

sSval Pointer to Buffer to Hold Response String
 lLeng Length of Buffer to Hold Response String
Return:
 0 on Success or Error Code on Failure
 Response is placed in Response Buffer on Success
Example:
 char buffer[128];
 GenRqstAsc (“:JITT:FREQ?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4-22

4.8.10 Send Command String and Receive Double Precision
Floating Point Number
long GenRqstDbl (char *sCmnd, double *dDval);

Input:
 sCmnd Pointer to Command String

dDval Pointer to double to Hold Response
Return:
 0 on Success or Error Code on Failure
 Response is placed in Double Precision Number on Success
Example:
 double freq;
 GenRqstDbl (“:JITT:FREQ?”, &freq);

This function may be used to send individual command strings to the device
when a Double Precision Floating Point number is expected as a response.

4.8.11 Send Command String and Receive Long Integer as
Response
long GenRqstInt (char *sCmnd, long *lIval)

Input:
 sCmnd Pointer to Command String
 lIval Pointer to Long Integer to Hold Response
Return:
 0 on Success or Error Code on Failure
 Response is placed in Long Integer on Success
Example:
 long preset;
 GenRqstInt (“:JITT:PRES?”, &preset);

This function may be used to send individual command strings to the
device when a Long Integer is expected as a response.

4-23

4.9 AG-100 ARM GENERATOR FUNCTIONS

These functions provide access to a Wavecrest AG-100 Arm Generator.

4.9.1 Initialize Arm Generator Device
long ArmInitDev (char *sDevName, long lBrdNumb,
 long lBrdAddr);
Input:
 sDevName Pointer to device name if UNIX platform
 lBrdNumb GPIB board number
 lBrdAddr GPIB board address
Return:
 0 on Success or Error Code on Failure
Example:
 ArmInitDev (“dev7”, 0, 7);

This function must be called once at the beginning of your application in order to
pass information concerning the GPIB configuration. The first parameter is used
to specify the GPIB device name on UNIX platforms and is ignored on Microsoft
Windows. The second parameter is the board number, and the final parameter is
the device number.

A successful call to ArmInitDev() must be accomplished before any other calls to
a Arm Generator using the Wavecrest Production API.

Typical examples of sDevName parameter on Sun Platforms:

sDevName Description
dev5 Device at bus address 5

Typical examples of sDevName parameter on HP-UX Platforms:

sDevName Description
hpib,5 Device at bus address 5, and
 symbolic name hpib.
7,5 Device at bus address 5, and
 connected to an interface card at
 logical unit 7.
lan[128.10.0.3]:hpib,5 Connect to a LAN server at IP
 address 128.10.0.3 which contains an
 hpib interface with device at bus
 address 5.
lan[hpibsrv.wave.com]:7,5 Connect to a LAN server named
 hpibsrv.wave.com which contains an
 interface card at logical unit 7 with
 primary device at bus address 5.

4-24

4.9.2 Cleanup Prior to Application Termination
long ArmExitDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 ArmExitDev ();

Before terminating the application, the supplied cleanup function should be
called. ArmExitDev() closes the GPIB device driver. After this cleanup has
been performed the application may terminate normally.

4.9.3 Download Arm Generator Setup
long ArmSetParm (AGEN *tAgen);

Input:
 tAgen Pointer to Arm Generator Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 ArmSetParm (&tAgen);

This function may be called to download the complete set of arm generator
parameters. Note that the Arm Generator Parameter Structure contains all the
information necessary to completely define an output state.

In order to optimize performance, this function keeps track of parameters that
have been configured and only downloads parameters that have changed since
the last time it was called. However, parameters which are manually sent using
the ArmTalkDev() function will not be tracked, and could therefore cause
unpredictable results. If this function is used to configure parameters, it should
be used exclusively, and no parameters should be manually sent.

4.9.4 Fill a Arm Generator Structure with Default Values
void ArmDefParm (AGEN *tAgen);

Input:
 tAgen Pointer to Arm Generator Parameter Structure
Return:
 None
Example:
 AGEN tAgen;
 ArmDefAgen (&tAgen);

4-25

This function is used to fill an Arm Generator Parameter Structure with default
values. These parameters could then be downloaded to the AG-100 by calling the
ArmSetParm() function. Using this function insures that all parameters contain
reasonable values.

It is not necessary to clear a Parameter Structure using the standard memset()
function prior to calling this function, as no dynamic memory allocation
information is contained within the Parameter Structure.

4.9.5 Arm Generator Reset
long ArmRsetDev (void);

Input:
 None
Return:
 0 on Success or Error Code on Failure
Example:
 ArmRsetDev ();

This function will reset the device to the power-up state. The existing machine
state is lost, and all parameters are restored to their default values.

4.9.6 Send Command String to Device
long ArmTalkDev (char *sCmnd);

Input:
 sCmnd Pointer to Command String
Return:
 0 on Success or Error Code on Failure
Example:
 ArmTalkDev (“:PATT C14FAC14FA”);

This function may be used to send individual command strings to the
device. This function should be used whenever no response is expected
from the device.

4-26

4.9.7 Send and Receive ASCII Command
long ArmRqstAsc (char *sCmnd, char *sSval, long lLeng);

Input:
 SCmnd Pointer to Command String

sSval Pointer to Buffer to Hold Response String
 lLeng Length of Buffer to Hold Response String
Return:
 0 on Success or Error Code on Failure
 Response is placed in Response Buffer on Success
Example:
 char buffer[128];
 ArmRqstAsc (“:PATT?”, buffer, 128);

This function may be used to send individual command strings to the
device when an ASCII response is expected.

4.9.8 Optimal Marker Placement Arm Delay
long ArmFindDly (AGEN *tAgen);

Input:
 tAgen Pointer to Arm Generator Parameter Structure
Return:
 0 on Success or Error Code on Failure
Example:
 ArmFindDly (&tAgen);

This function may be called to find the delay that provides the optimal
marker placement. The settings contained in the tParm member of the
AGEN structure are DTS207x parameters used as feedback for assessing
the marker placement. When this function successfully returns, the
lCyclDly and lFineDly parameters will be altered to the values that were
determined to provide the greatest jitter tolerance.

4-27

This page intentionally left blank.

4-28

CHAPTER 5 – CODE SAMPLES

The following code samples are provided in order to aid in getting started
using the WAVECREST Production API. These code samples are
provided for instructional purposes only.

5.1 MODIFYING WINDOW STRUCTURE PARAMETERS

The following code snippet shows how parameters pertaining to a high-
level window structure may be modified.

/* Allocate window structure */
STAT tStat;

/* Zero out the structure, and initialize to defaults */
memset (&tStat, 0, sizeof (STAT));
WavDefStat (&tStat);

/* Change input parameters from default */
tStat.tParm.lFuncNum = FUNC_PW_P; /* Function PW+ */
tStat.tParm.lChanNum = 2; /* Channel 2 */
tStat.tParm.lAutoArm = ARM_EXTRN; /* External Arm */
tStat.tParm.lStrtArm = 2; /* Start Arm 2 */
tStat.tParm.lStopArm = 2; /* Stop Arm 2 */
tStat.tParm.lSampCnt = 500; /* Sample Size */
tStat.tParm.lStopCnt = 11; /* Stop Count */

5.2 PERFORMING TAIL-FIT

The following code snippet shows how a tail-fit can be performed in a
Histogram Window. Note that it may take many passes for the tail-fit to
succeed. Therefore you may want to error if not successfully in a certain
number of passes. Set the lPass parameter to 0 to start a new tail-fit analysis.

/* Allocate window structure, and initialize to defaults */
HIST tHist;
memset (&tHist, 0, sizeof (HIST));
WavDefHist (&tHist);

/* Enable tail-fit */
tHist.lTailFit = 1;

/* Loop until tail-fit is successful */
while (!tHist.tTfit.lGood)
 {
 if (WavGetHist (&tHist))
 goto ErrorHandler;
 }

5-1

5.3 DRAWING FROM A PLOT STRUCTURE

This code snippet shows how to draw from a plot structure. The example is for
Microsoft Visual C++, but can be modified for other platforms.

void DrawPlot (CDC *pCdc, // Pointer to device context.
 CRect *wind, // Window to draw within
 // in device coordinates.
 PLOT *plot, // Source plot structure.
 double xmin, // Plot extents to use when
 double xmax, // drawing, this allows a
 double ymin, // margin to be added around
 double ymax)// plot or overlay of plots
 { // with differing extents.
 long i;
 double x, y;

 // First plot X point as a percent of window extents
 x = (plot->dXmin - xmin) / (xmax - xmin);

 // First plot X point in device coordinates
 x = (double) (wind->right - wind->left)
 * x + (double) wind->left;

 // First plot Y point as a percent of window extents
 y = (plot->dData[0] - ymin) / (ymax - ymin);

 // First plot Y point in device coordinates
 y = (double) (wind->bottom - wind->top)
 * (1.0 - y) + (double) wind->top;

 // Move current location to the first plot point
 pCdc->MoveTo ((int) x, (int) y);

 for (i = 1; i < plot->lNumb; i++)
 {
 // Calculate what the next X point is
 x = ((plot->dXmax - plot->dXmin) * (double) i
 / (double) (plot->lNumb - 1) + plot->dXmin);

 // This plot X point as a percent of window extents
 x = (x - xmin) / (xmax - xmin);

 // This plot X point in device coordinates
 x = (double) (wind->right - wind->left)
 * x + (double) wind->left;

 // This plot Y point as a percent of window extents
 y = (plot->dData[i] - ymin) / (ymax - ymin);

 // This plot Y point in device coordinates
 y = (double) (wind->bottom - wind->top)
 * (1.0 - y) + (double) wind->top;

 // Draw line to this plot point
 pCdc->LineTo ((int) x, (int) y);
 }
 }

5-2

5.4 PERFORMING A DATACOM MEASUREMENT

This code snippet shows how a dataCOM measurement can be taken. Error
checking is performed at each step, and several acquisition parameters are
overridden. A pulsefind is used to determine suitable voltage levels, and results
are printed.

/* Declare required include files */
#include <stdio.h>
#include <string.h>
#include "wavapi.h"

int main(void)
 {
 /* Local variables */
 DCOM tDcom;
 int RetCode;

 /* Initialize DTS207x device */
 RetCode = DtsInitDev("hpib,5", 0, 5);
 if (RetCode)
 {
 fprintf(stderr,
 "\nDtsInitDev failed, return code = %i\n", RetCode);
 DtsExitDev();
 return -1;
 }

 /* Initialize structure to defaults */
 memset(&tDcom, 0, sizeof (DCOM));
 WavDefDcom(&tDcom);

 /* Override to use external arming */
 tDcom.tParm.lAutoArm = ARM_EXTRN;
 /* Select the pattern to use */
 strcpy(tDcom.sPtnName, "2^7-1.ptn");
 /* Do not measure the Bit Rate */
 tDcom.lGetRate = 0;
 /* Assign the Bit Rate to use */
 tDcom.dBitRate = 1.0625e9;

 /* Perform a pulsefind */
 RetCode = WavPulsFnd(&tDcom.tParm, WIND_DCOM);
 if (RetCode)
 {
 fprintf(stderr,
 "\nWavPulsFnd failed, return code = %i\n", RetCode);
 DtsExitDev();
 return -1;
 }

5-3

 /* Acquire the measurement */
 RetCode = WavGetDcom(&tDcom);
 if (RetCode)
 {
 fprintf(stderr,
 "\nWavGetDcom failed, return code = %i\n", RetCode);
 DtsExitDev();
 return -1;
 }

 /* Print the results in picoseconds */
 fprintf(stderr,
 "Deterministic Jitter: %.3lfps\n", tDcom.dDdjt * 1e12);
 fprintf(stderr,
 "Random Jitter: %.3lfps\n", tDcom.dRjit[0] * 1e12);
 fprintf(stderr,
 "Total Jitter: %.3lfps\n", tDcom.dTjit[0] * 1e12);

 /* Release the memory */
 WavClrDcom(&tDcom);

 /* Release the device */
 RetCode = DtsExitDev();
 if (RetCode)
 {
 fprintf(stderr,
 "\nDtsExitDev failed, return code = %i\n", RetCode);
 return -1;
 }

 /* Indicate successful completion of the program */
 return 0;
 }

5-4

CHAPTER 6 – BUILD CONSIDERATIONS

6.1 SUPPORTED COMPILERS FOR THE WAVECREST
PRODUCTION API

The WAVECREST Production API was built and is supported using the
following compilers. Other compilers may be used and provide
satisfactory results, although performance is not guaranteed.

Win32 (Win95, Win98, Win2000 and WinNT 4.0)
 Microsoft Visual C++ 5.0 and above
 Microsoft C/C++ Optimizing Compiler 11.00
 Microsoft Visual Basic 6.0
HP-UX 9.05
 HP C/ANSI C Developer's Bundle A.B9.05.3A
HP-UX 10.2
 HP C/ANSI C Developer's Bundle B.10.20.03
Sun 4.1.x (Solaris 1)
 SPARCompiler C 3.0.1
Sun 2.5.1 or above (Solaris 2)
 SPARCompiler C 3.0.1

6.2 BUILD REQUIREMENTS

When building an application using the WAVECREST Production API
the following requirements need to be considered.

6.2.1 Developing with C++

The define CPLUSPLUS must be supplied if you are developing a C++
application. This informs the compiler that the module was created as a C
library, and does not contain the additional information that is normally
contained in a C++ library. If you are developing a standard C
application, supplying this define will result in an error. If you are using a
command line compiler, this define may be supplied as follows:

cl -c -DCPLUSPLUS apitest.cpp

6-1

6.2.2 Win32 (Win95, Win98, and WinNT 4.0)

A static stub library and dynamic library link library (DLL) are supplied
for developing under Microsoft Windows. You can link to the static stub
library which relieves all the programming of the chores normally
associated with linking to a DLL. The DLL libraries must be available in
the current directory or somewhere in the PATH in order to execute the
application.

The define WIN32 must be supplied to enable options specific to
Microsoft Windows platforms. If you are developing within the Visual
C++ environment, this define is automatically supplied for you. If you are
using a command line compiler, this define may be supplied as follows:

cl -c -DWIN32 apitest.c

When developing under Visual Basic the two files dtsapi.bas and
wavapi.bas are substituted for the normal C include files. These two files
should be added as modules in your project, and contain all function call
and structure declarations. The two DLL files need to be available in the
current directory or somewhere in the PATH in order to execute the
resulting application.

6.2.3 All UNIX Platforms

The define WIN32 must NOT be defined when compiling under UNIX
platforms. This define enables options which are not suitable under UNIX
platforms.

6.2.4 HP-UX 9.05 and HP-UX 10.20

The ANSI C compiler must be used. ANSI compatibility is enabled from
a command line by specifying the -Aa option as follows:

cc -c -Aa apitest.c

Required HPIB support is supplied by linking to the Standard Instrument
Control Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lsicl to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

cc -Aa apitest.o -ldts -lwav -lsicl -lm -o apitest

6-2

6.2.5 Sun 4.1.x (Solaris 1)

The ANSI C compiler must be used. ANSI compatibility is enabled from
a command line by using the acc command as follows:

acc -c apitest.c

Required GPIB support is supplied by linking to the National Instruments
GPIB Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lgpib to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

acc apitest.o -ldts -lwav -lgpib -o apitest

6.2.6 Sun 2.5.1 or above (Solaris 2)

The standard ANSI C compiler must be used. The command line would
appear as follows:

cc -c apitest.c

Required GPIB support is supplied by linking to the National Instruments
GPIB Library. This library must already be installed per manufacturers
documentation. This library can be included by adding -lgpib to the link
command. The resulting link command including the Wavecrest API
libraries takes the form:

cc apitest.o -ldts -lwav -lgpib -lm -o apitest

6-3

This page intentionally left blank.

6-4

APPENDIX A – ERROR CODES

Define Value Description
SUCCESS 0 Success
DTS_ERROR -1 Communication error with DTS
MEM_ERROR -2 Could not allocate required memory
CMD_ERROR -3 Invalid parameters passed to function
VER_ERROR -4 Invalid DTS version or DLL version
FIT_ERROR -5 Failure applying tail-fit
LIM_ERROR -6 Results exceed specified limits
FIO_ERROR -7 File I/O error
ARM_ERROR -8 No suitable arm signal detected
TRG_ERROR -9 No suitable trigger signal detected
USR_ERROR -10 Operation was terminated by user
UNT_ERROR -11 Unit interval data exceeds limits
DDJ_ERROR -12 DCD+DDJ data exceeds limits
VAR_ERROR -13 RJ+PJ Variance data exceeds limits
LRN_ERROR -14 Learn Mode data exceeds limits
INT_ERROR -15 Insufficient points for interpolation
TIM_ERROR -16 Max measurement time exceeded
PCI_ERROR -17 Could not read or write to PCI bus
LOK_ERROR -18 Error unlocking DMA transfer mem
CAL_ERROR -19 Missing or invalid calibration file
SYS_ERROR -20 System or hardware failure

A-1

This page intentionally left blank.

A-2

APPENDIX B – VBASIC EXAMPLE

The following shows what the sample program in Chapter 1 might look
like written as a Visual Basic subroutine:

Private Sub Sample_Click()
' Step #1 Allocate Required Structures
Dim tStat As STAT

' Step #2 Initialize the DTS207x
If (DtsInitDev("dev5", 0, 5) <> 0) Then
 mainDisplay.Text = "DtsInitDev failed..."
 GoTo ExitPoint:
End If

' Step #3 Initialize STAT Window Structure
' memset() is not necessary, in VBasic
' objects are automatically cleared
WavDefStat tStat

' Step #4 Perform Data Acquisition
If (WavGetStat(tStat) <> 0) Then
 mainDisplay.Text = "WavGetStat failed..."
 GoTo ExitPoint:
End If

' Step #5 Print Results
mainDisplay.Text = "-Wavecrest Production API-" & _
 vbCrLf & "- Sample Application -" & vbCrLf & _
 vbCrLf & " Average: " & _
 Format(tStat.dMean * 1000000000#, "0.000") & "ns" & _
 vbCrLf & " 1-Sigma: " & _
 Format(tStat.dSdev * 1000000000000#, "0.000") & "ps" & _
 vbCrLf & " Minimum: " & _
 Format(tStat.dMini * 1000000000#, "0.000") & "ns" & _
 vbCrLf & " Maximum: " & _
 Format(tStat.dMaxi * 1000000000#, "0.000") & "ns"

' Step #6 Cleanup and Return
WavClrStat tStat

ExitPoint:
DtsExitDev
End Sub

B-1

This page intentionally left blank.

B-2

WAVECREST Corporation
World Headquarters: West Coast Office: Europe Office: Japan Office:
7626 Golden Triangle Drive 1735 Technology Drive, Ste. 400 Hansastrasse 136 Otsuka Sentcore Building, 6F
Eden Prairie, MN 55344 San Jose, CA 95110 D-81373 München 3-46-3 Minami-Otsuka
(952) 831-0030 (408) 436-9000 +49 (0)89 32225330 Toshima-Ku, Tokyo
FAX: (952) 831-4474 FAX: (408) 436-9001 FAX: +49 (0)89 32225333 170-0005, Japan
Toll Free: 1-800-733-7128 1-800-821-2272 +81-03-5960-5770
www.wavecrest.com Fax: +81-03-5960-5773
200002-05 REV A

http://www.wavecrestcorp.com/

